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Summary

TC8573

•	 The direct-drive VISAR qualification experiments on the NIF 
have been simulated using HYDRA 3-D 

•	 The shock-speed variation due to shock curvature  
is comparable to the VISAR shock-speed precision

•	 The edge rarefaction from the step has minimal impact on the 
VISAR image region 

•	 A ramp pulse has been designed for greater shock steadiness 
in the aluminum step
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Shock timing of ignition experiments  
for the National Ignition Facility (NIF) 
will be confirmed using surrogate targets 

TC8574

•	 As inertial confinement fusion targets are imploded, they generate 
several shock waves

•	 The shock waves must be precisely timed to maintain a low target adiabat 
while achieving the necessary fuel compression 

•	 The shock speeds are measured using the VISAR* optical interferometer 
and a streaked optical pyrometer

•	 Based on previous experiments on OMEGA, this platform will be tested 
on the NIF with direct drive, using impedance-matching experiments of a 
quartz sample and a stepped aluminum layer as a standard 

*Velocity Interferometer System for any Reflector
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An EOS experiment performed on OMEGA* was 
simulated to calibrate HYDRA’s modeling of the 
VISAR commissioning experiment

TC8575

•	 This shot was chosen because it 
had a particularly clear VISAR trace

•	 The simulated shock speeds agree 
with the VISAR-inferred experimental 
shock speeds to within ~10%

*M. A. Barrios (JI2.00002).



The NIF target will be driven by two “quads” to achieve 
pressures of ~10 Mbar

TC8576

•	 The laser beams are incident at 40°

•	 12 kJ of laser energy will be delivered 
in a 6-ns pulse and a 1.2-mm-diam spot
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Accurate modeling of the experiment requires  
3-D simulations

TC8577

•	 1-D modeling over-predicts target drive and shock 
speeds caused by lateral expansion of the corona

•	 3-D modeling is necessary because of the target 
step and the laser-spot ellipticity
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Shock-front curvature decreases the size of the streaked 
VISAR image

TC8717

•	 The 532-nm VISAR probe beam reflects off the shock front

•	 The edges of the spot are curved due to the spot-edge rarefaction wave

•	 Rays with an angle greater than 18° miss the collection optic
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The shock-speed variation over 200 nm is comparable 
to the VISAR precision

TC8718

•	 When the shock transits into the quartz at ~5 ns, the size of the 
acceptance region is over 1 mm, larger than the VISAR viewing area

•	 The average shock speed from 4 to 5 ns is lower by 1.1% at a radius 
of 200 nm than the speed at the center of the shock front

•	 This is comparable to the ~1% shock-velocity precision of VISAR
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Edge rarefactions caused by the aluminum and quartz 
steps have minimal effect on the VISAR detection region

TC8579

•	 The Al layer is stepped to provide an average shock-speed 
measurement

•	 The steps in the Al and the quartz result in edge rarefaction fans

•	 The rarefaction expands about 40 nm perpendicular to the 
shock into the quartz

•	 This distance is much smaller than the VISAR image size and  
is comparable to two VISAR fringes
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A rising pulse has been designed to provide constant 
shock speed within the Al layer

TC8578

•	 Laser coupling and shock strength decrease initially  
as the corona is established

•	 The CH–Al-layer interface causes a rarefaction wave, 
which also attenuates the shock

•	 Equation-of-state experiments using a step target with an 
opaque standard require a steady shock

•	 A rising pulse was designed in 1-D, which improves shock 
steadiness within the aluminum step
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Summary/Conclusions

TC8573

VISAR commissioning experiments on 
the NIF are scheduled for February 2010.

•	 The direct-drive VISAR qualification experiments on the NIF 
have been simulated using HYDRA 3-D 

•	 The shock-speed variation due to shock curvature  
is comparable to the VISAR shock-speed precision

•	 The edge rarefaction from the step has minimal impact on the 
VISAR image region 

•	 A ramp pulse has been designed for greater shock steadiness 
in the aluminum step


