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•	 The	one-dimensional	(1-D) measurable Lawson criterion of Zhou 
and Betti* is extended to 3-D using the Yield-Over-Clean (YOC) as 
a measure of the implosion uniformity

•	 The	ignition	parameter	from	the	analytic	theory	depends	on	areal	
density, ion temperature, and yield-over-clean

•	 The	analytic	model	is	in	reasonable	agreement	with	a	simulation	
database yielding

•	 Cryogenic	implosions	on	OMEGA	have	achieved	an	ignition	
parameter |fit á 0.008. Hydro-equivalent ignition on OMEGA 
requires | á 0.04.

An analytic model of the hot-spot evolution provides  
a measurable 3-D ignition criterion for ICF

*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).
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The one-dimensional ignition criterion depends  
on the total areal density and ion temperature  
(without calculated a-particle deposition)
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C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).

FSC

3
0.0

0.5

1.0

1.5

2.0

4 5

GT no-aH (keV)max

43.5

Best simple
fit for 3.5 < T < 7 keV

tR = 20/T2

0.5

0.0

1.0

1.5

2.0

5 6 7

GT no-aHn (keV)

Gt
R

n
o

-a
H n

 (g
/c

m
2 )

Gt
R

n
o

-a
H n

 (g
/c

m
2 )

Zhou and Betti 1-D Model 1-D Simulations

6

Ignition
Ignition

7 8

Numerical solution
Analytic fit



The effects of nonuniformities in the deceleration phase are 
added to the ignition model through a clean volume analysis 
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•	 Nonuniformities	reduce	the	volume	 
where fusion reactions occur:*  

•	 The	hot	spot	energy	balance	is	affected 
by a reduced “clean” volume
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•	 GvvH á CaT3 ! valid for T ~ 4 to 8 keV

Fusion reactions occur only within the clean volume.
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*R. Kishony and D. Shvarts, Phys. Plasmas 8, 4925 (2001). 
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Zhou* and Betti’s model is modified to include  
the clean radius in the hot-spot energy balance
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•	The	hot-spot	formation	and	ignition	model	is	governed	by	three	ODE’s

Hot-spot
energy balance

Temperature equation 
(from hot-spot mass 
conservation)

Shell Newton’s law
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*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).



The yield-over-clean (YOC) is used as a measure 
of the implosion uniformity
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The RT becomes nonlinear at 
different times, the spikes free fall

The spikes grow at different
rates (i.e. different slopes)
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Multiple models are used to assess the sensitivity  
of the ignition conditions to the hot-spot model
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YOCno-a = YOCno-a (tn,) YOCno-a = YOCno-a (slope)

tn, = tn, (YOCno-a) slope = slope (YOCno-a)

FSC

Rclean = Rclean (YOCno-a)



The ignition model is cast in a dimensionless form using 
stagnation properties calculated without a-particle deposition
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Ignition condition: for a fixed YOCno-a, find critical ca leading to singular solutions.
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•	 Ignition	depends	on	two	parameters:	ca and YOCno-a
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*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).



The 3-D ignition condition is approximately independent  
of the hot-spot models
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The clean volume model is implemented in LILAC 
and is used to generate a database of gain curves.
The ignition condition is tuned with the simulation database
FSC

TC8658 K. Anderson (U05.00004).
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FSC

Cryogenic implosions on OMEGA have achieved |fit . 0.008; 
hydro-equivalent ignition on OMEGA requires | . 0.04
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•	 For	cryogenic	implosions	on	OMEGA	(have achieved)

•	 Hydro-equivalent	ignition	on	OMEGA	requires

, , *R g T0.2 cm 2.1keV YOC 0.12
stag
no

stag
no. .t =a a- -^ h

, . ,R g T3 3 4 50. cm keV YOC 0.12
stag
no

stag
no. .t =a a- -^ h

|fit = 0.008

|fit = 0.04
**

 * T. C. Sangster (NI2.00002).
 ** R. Betti (PT3.00001).
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Summary/Conclusions

FSC

An analytic model of the hot-spot evolution provides  
a measurable 3-D ignition criterion for ICF and  
is in good agreement with simulation results

•	 The	one-dimensional	(1-D) measurable Lawson criterion of Zhou 
and Betti* is extended to 3-D using the Yield-Over-Clean (YOC) as 
a measure of the implosion uniformity

•	 The	ignition	parameter	from	the	analytic	theory	depends	on	areal	
density, ion temperature, and yield-over-clean

•	 The	analytic	model	is	in	reasonable	agreement	with	a	simulation	
database yielding

•	 Cryogenic	implosions	on	OMEGA	have	achieved	an	ignition	
parameter |fit á 0.008. Hydro-equivalent ignition on OMEGA 
requires | á 0.04. 

*C. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008).


