Shock-Timing Measurements in Directly Driven Spherical ICF Targets

VISAR Data 1st shock 1st shock in CD shell in D₂ 500 2nd shock Distance (μ m) Aperture Shock hits cone 3rd shock (foot) -500 **Foot pulse Drive pulse** 8 0 2 4 6 10 Time (ns)

T. R. Boehly University of Rochester Laboratory for Laser Energetics 51st Annual Meeting of the American Physical Society Division of Plasma Physics Atlanta, GA 2–6 November 2009

Shock velocity and timing measurements in spherical cryogenic-deuterium targets are used to optimize direct-drive implosions

- Timing of multiple shocks is critical to the performance of inertial confinement fusion targets
- Multiple spherical shocks are measured in cryogenic-deuterium targets
- Ramp compression of deuterium targets is difficult with continuous pulses; tuning discrete shock waves is easier
- Multiple-pulse experiments are correctly modeled
- Hydrodynamics of ablator–fuel interaction in cryogenic targets must be properly modeled

Shock velocity and timing are readily measured in transparent targets using optical diagnostics

The timing of multiple convergent shocks is studied using cryogenic spheres with re-entrant cones

Three spherically convergent shocks were observed in directly-driven cryogenic spherical targets

UR

The temporal features in self-emission data confirm shock-timing observed in VISAR data

UR

🔶 GENERAL

The VISAR signal abruptly ends at high deuterium shock velocities (~70 μ m/ns); likely due to a radiative precursor

52627, 56553, 52471 E18422

Similar ramped pulses can produce different "compression" waves; deuterium easily "shocks up"

The time delay of shock coalescence has a thresholdlike dependence on the first picket energy

UR

Warm Targets

Shock-velocity comparison for warm CH spheres shows good agreement between simulations and experimental data

Shock-timing in warm CH targets does not exhibit dependence on pulse energy

UR

Behavior in cryogenic targets may result from rarefactions created at ablator-fuel interface.

Simulations agree with measured shock velocity and timing for direct-drive cryogenic targets

Shock velocity and timing measurements in spherical cryogenic-deuterium targets are used to optimize direct-drive implosions

- Timing of multiple shocks is critical to the performance of inertial confinement fusion targets
- Multiple spherical shocks are measured in cryogenic-deuterium targets
- Ramp compression of deuterium targets is difficult with continuous pulses; tuning discrete shock waves is easier
- Multiple-pulse experiments are correctly modeled
- Hydrodynamics of ablator–fuel interaction in cryogenic targets must be properly modeled