High-Precision Measurements of the Equation of State of Polymers at 1 to 10 Mbar UR 10 8 Pressure (Mbar) 6 4 CH₂ CH 2 0 2.0 2.5 3.0 3.5 4.0 1.5 Density (g/cm³) **51st Annual Meeting of the American Physical Society** M. A. Barrios **Division of Plasma Physics** Atlanta, GA **University of Rochester** 2-6 November 2009 Laboratory for Laser Energetics

Summary

Precision equation-of-state (EOS) measurements are obtained on various polymers at 1 to 10 Mbar

- Precise knowledge of ablator EOS is required for ICF target designs
 some NIF target designs use Ge-doped GDP
- Laser-driven shock waves produce EOS data using the impedancematching (IM) method
- CH data allows for model discrimination, favoring SESAME 7592
 - mild softening is not accounted for between 2 to 4 Mbar
 - single- and double-shock results display similar behavior
- Stoichiometry effects between CH and CH₂ are well-predicted by models
- EOS data for NIF ablator material was acquired

- I. Motivation
- **II. Precision EOS measurements**

III. Experiments

- A. Single shock, principal Hugoniot measurements
 - i. Polystyrene (CH)
 - ii. Polypropylene (CH₂)
 - iii. GDP (CH_{1.3}O_{0.023})

NIF ablators

C:H ratio

- iv. 0.6at% Ge-doped GDP
- B. Double shock, off Hugoniot measurements
 - i. Polystyrene (CH)

D. E. Fratanduono

T. R. Boehly

D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

D. G. Hicks

P. M. Celliers

J. Eggert

Lawrence Livermore National Laboratory

Motivation

High-pressure EOS data are required to understand high-energy-density (HED) physics

- Reliable EOS data is important to dense plasma theory, where radiation hydrodynamic codes are used.
- Need material EOS over wide density and temperature ranges.
- Existing data covers a small fraction of these ranges.

EOS measurements above 1 Mbar are used to benchmark models.

National Research Council (U.S.) Committee on High Energy Density Plasma Physics, *Frontiers in High Energy Density Physics: The X-Games of Contemporary Science* (National Academies Press, Washington, DC, 2003).

Some NIF ignition target designs use Ge-doped plastic ablators—high-pressure EOS measurements are needed

Hydrocarbons are common ablator materials for ICF fuel pellets

- Ablator material properties are essential to the design and simulation of ICF targets
- By varying C to H ratio, the effect of stoichiometry on high-pressure behavior can be investigated

	Formula	—¢́—¢́— сн
Polystyrene	СН	∟ н н <i></i>
Polypropylene	CH ₂	
Glow discharge polymer (GDP)	CH _{1.3} O _{0.023}	└
Ge-doped GDP	CH _{1.3} O _{0.023} + Ge _{at% 0.6}	$\left -\dot{c}-\dot{c}-\dot{c}-\right $ CH ₂

UR 🔌

EOS measurements on CH_x will provide benchmark behavior on hydrocarbon polymers under extreme *P*, ρ conditions.

OMEGA Experiments

Polymer EOS experiments were performed using laser-driven shock waves on OMEGA

- Experiments used laser energies between 200 to 1130 J delivered in a nominally 2-ns square pulse.
- Average laser irradiances on target were 0.3 to $1.1 \times 10^{14} \, W/cm^2$

VISAR* has time resolution of <30 ps and shock-velocity precision of ~1%.

Impedance Matching $U_s = F(U_p)$

EOS data are obtained from the impedance-matching technique

E17323b

Experimental errors must be minimized and systematic errors understood for precision EOS measurements

- Measurement accuracy depends on knowledge of standard.
- Most impedencematching (IM) studies quote only random errors.
- Cannot propagate systematic errors using theoretical EOS.

Random errors

$$\frac{\delta\rho}{\rho} \propto (\eta - 1) \times \frac{\delta U_{s}}{U_{s}}, \text{ where } \eta = \frac{\rho}{\rho_{0}}$$
$$\eta \simeq 4 - 6 \rightarrow \frac{\delta\rho}{\rho} \propto (3 - 5) \times \frac{\delta U_{s}}{U_{s}}$$

E13920d

Random Errors

Higher precision is obtained with a transparent standard compared to an opaque standard

Random Errors

Higher precision is obtained with a transparent standard compared to an opaque standard

Systematic Errors

α -quartz has been validated as an EOS standard

¹D. G. Hicks *et al.*, Phys. Plasmas <u>12</u>, 082702 (2005).

 ²M. D. Knudson et al., J. Appl. Phys. <u>97</u>, 073514 (2005).
³T. R. Boehly et al., in Shock Compression of Condensed Matter–2007, Vol. 955, p 19–22.

Systematic Errors

α -quartz's release isentrope is approximated using the Mie-Grüneisen EOS

• Γ describes pressure differences between equal volume states on the Principal Hugoniot

$$\Gamma = V \left(\frac{dP}{dE}\right)_{V}$$

• Combining the above with the first law of thermodynamics,

dE = TdS - PdV

with dS = 0, leads to a recursion relation describing a loci of isentropes in the *P*–*V* plane

• Based on models, Γ is assumed to be constant in the high-pressure fluid regime, with value Γ = 0.64±0.11

Precision EOS data tightly constrain polystyrene (CH) EOS models

The dependence on the C:H ratio is well-predicted by models

The polystyrene results have higher precision than previous studies

²N. Ozaki *et al.*, Phys. Plasmas <u>12</u>, 124503 (2005).

³N. Ozaki et al., Phys. Plasmas 16, 062702 (2009).

Shocked CH and CH₂ become reflective at 1 to 2 Mbar

• Reflectivity measurements are needed for temperature calculations

UR

insulator-conductor transition.

The measured brightness temperatures are consistent with models; but differences among models are too small to be discerned

This provides a complete EOS of CH and CH₂.

Preliminary data on Ge-doped GDP displays softer behavior than most models

LL

Shock transit into a higher impedance material results in a reflected shock

Reflected shocks are used to create double shock states in CH

Polystyrene (CH) double-shock data are in agreement with single-shock results

Summary/Conclusions

Precision equation-of-state (EOS) measurements are obtained on various polymers at 1 to 10 Mbar

- Precise knowledge of ablator EOS is required for ICF target designs
 some NIF target designs use Ge-doped GDP
- Laser-driven shock waves produce EOS data using the impedancematching (IM) method
- CH data allows for model discrimination, favoring SESAME 7592
 - mild softening is not accounted for between 2 to 4 Mbar
 - single- and double-shock results display similar behavior
- Stoichiometry effects between CH and CH₂ are well-predicted by models
- EOS data for NIF ablator material was acquired

Inclusion of a softer α -quartz EOS produces ~0.2% to 6.0% difference in polystyrene density values

