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Precision equation-of-state (EOS) measurements 
are obtained on various polymers at 1 to 10 Mbar

E18341

•	 Precise knowledge of ablator EOS is required for ICF target designs
	 –	 some NIF target designs use Ge-doped GDP

•	 Laser-driven shock waves produce EOS data using the impedance-
matching (IM) method

•	 CH data allows for model discrimination, favoring SESAME 7592
      	–	mild softening is not accounted for between 2 to 4 Mbar
      	–	 single- and double-shock results display similar behavior

•	 Stoichiometry effects between CH and CH2 are well-predicted by models 

•	 EOS data for NIF ablator material was acquired

Summary



Outline

I.	 Motivation

II.	 Precision EOS measurements 

III. Experiments

	 	 A. 	 Single shock, principal Hugoniot measurements

				    i.  	 Polystyrene (CH)

				    ii.  	Polypropylene (CH2)

				    iii. 	GDP (CH1.3O0.023)

				    iv. 	 0.6at% Ge-doped GDP

          B. 	 Double shock, off Hugoniot measurements

                  i.   	Polystyrene (CH)	

C:H ratio

NIF ablators
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High-pressure EOS data are required  
to understand high-energy-density (HED) physics

E18342

•	 Reliable EOS data is 
important to dense  
plasma theory, where 
radiation hydrodynamic 
codes are used.

•	 Need material EOS 
over wide density and 
temperature ranges. 

•	 Existing data covers  
a small fraction of  
these ranges.

Motivation

EOS measurements above 1 Mbar are used to benchmark models.

National Research Council (U.S.) Committee on High Energy Density 
Plasma Physics, Frontiers in High Energy Density Physics: The X-Games of 
Contemporary Science (National Academies Press, Washington, DC, 2003).



Some NIF ignition target designs use Ge-doped plastic 
ablators—high-pressure EOS measurements are needed

E18344 S.W. Haan, IFSA 2009.

Tube 10 nm SiO2

Hole 5 nm

CH + Ge
0.0% 1.082 g/cm3

0.2% 1.096 g/cm3

0.5% 1.116 g/cm3

0.2% 1.096 g/cm3

0.0% 1.082 g/cm3

1180 nm
1024
1009
970
965
960
897



Hydrocarbons are common ablator materials  
for ICF fuel pellets

E18343

•	 Ablator material properties are essential to the design and  
simulation of ICF targets

•	 By varying C to H ratio, the effect of stoichiometry on high-pressure 
behavior can be investigated

Formula

Polystyrene CH

Polypropylene CH2

Glow discharge 
polymer (GDP) CH1.3O0.023 

Ge-doped GDP CH1.3O0.023 + Geat% 0.6

EOS measurements on CHx will provide benchmark behavior
on hydrocarbon polymers under extreme P, t conditions.
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Polymer EOS experiments were performed  
using laser-driven shock waves on OMEGA

E18346

•	 Experiments used laser energies between 200 to 1130 J delivered  
in a nominally 2-ns square pulse.

•	 Average laser irradiances on target were 0.3 to 1.1 × 1014 W/cm2

VISAR* has time resolution of <30 ps and shock-velocity precision of ~1%.

OMEGA Experiments

*Velocity Interferometer System for any Reflector

Image relay 
from target to 
interferometer

Velocity
interferometer

Vacuum
chamber

VISAR

OMEGA
Target

Probe laser (532 nm)
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EOS data are obtained from the  
impedance-matching technique

E17323b
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Experimental errors must be minimized and systematic 
errors understood for precision EOS measurements

E13920d

•	 Measurement accuracy 
depends on knowledge  
of standard.

•	 Most impedence-
matching (IM) studies 
quote only random 
errors.

•	 Cannot propagate 
systematic errors  
using theoretical EOS.
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Higher precision is obtained with a transparent standard 
compared to an opaque standard

E17324b

Random Errors

•	 Only information 
is transit time

•	 Can use only 
integrated shock 

•	 No knowledge of 
shock stability

•	 EOS observables  
are obtained at the  
contact interface
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Higher precision is obtained with a transparent standard 
compared to an opaque standard

E17324b

Random Errors

•	 Only information 
is transit time

•	 Can use only 
integrated shock 

•	 No knowledge of 
shock stability
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a-quartz has been validated as an EOS standard

E17325b

2	M. D. Knudson et al., J. Appl. Phys. 97, 073514 (2005).
3T. R. Boehly et al., in Shock Compression
 	of Condensed Matter–2007, Vol. 955, p 19–22.

1	D. G. Hicks et al., Phys. Plasmas 	
	 12, 082702 (2005).

Systematic Errors
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a-quartz’s release isentrope is approximated using 
the Mie-Grüneisen EOS

E18345

•	 C describes pressure differences 
between equal volume states on 
the Principal Hugoniot

•	 Combining the above with the 
first law of thermodynamics, 

	 with dS = 0, leads to a recursion 
relation describing a loci of 
isentropes in the P–V plane

•	 Based on models, C is assumed to 
be constant in the high-pressure 
fluid regime, with value C = 0.64±0.11                        

V
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Precision EOS data tightly constrain polystyrene (CH) 
EOS models

E18347
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The dependence on the C:H ratio is well-predicted  
by models

E18348

10

8

6

P
re

ss
u

re
 (

M
b

ar
)

4

2

0
1.5 2.0 2.5 3.0

Density (g/cm3)

3.5 4.0

SESAME 7171 (CH2)

Gas gun
data

CH2

CH

SESAME 7592 (CH)

SESAME 7180 (CH2)



The polystyrene results have higher precision  
than previous studies

E18350

1R. Cauble et al., Phys. Plasmas 4, 1857 (1997).
2N. Ozaki et al., Phys. Plasmas 12, 124503 (2005).
3N. Ozaki et al., Phys. Plasmas 16, 062702 (2009).
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Shocked CH and CH2 become reflective 
at 1 to 2 Mbar

E18351

Expected behavior of dielectrics undergoing
insulator-conductor transition.

•  Reflectivity measurements are needed for temperature calculations
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The measured brightness temperatures are consistent  
with models; but differences among models are too small  
to be discerned

E18384
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This provides a complete EOS of CH and CH2.



Preliminary data on Ge-doped GDP displays  
softer behavior than most models

E18349
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Shock transit into a higher impedance material results  
in a reflected shock

E17079a
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Reflected shocks are used to create  
double shock states in CH

E18057a

Small differences in models are amplified using reshock to move off the Hugoniot.

VISAR

OMEGA

CH ablator

ReshockSingle shock

0

4

8

12

5 10 15 20 25
0

30 35
Particle velocity (nm/ns)

P
re

ss
u

re
 (

M
b

ar
)

0

–500

0

500

2 4 6
ns

n
m

8 10

100.0

First
shock

Second
shock

P
re

ss
u

re
 (

M
b

)

10.0

1.0

0.1
0.1 1.0

Density (g/cm3)

ICF shock timing

Isentro
pes

Tim
e
10.0

Single
shock

Double
shock

a = 1

a-quartz a-quartzCH

a-quartz a-quartzCH



Polystyrene (CH) double-shock data are in agreement 
with single-shock results
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Precision equation-of-state (EOS) measurements 
are obtained on various polymers at 1 to 10 Mbar

E18341

Summary/Conclusions

•	 Precise knowledge of ablator EOS is required for ICF target designs
	 –	 some NIF target designs use Ge-doped GDP

•	 Laser-driven shock waves produce EOS data using the impedance-
matching (IM) method

•	 CH data allows for model discrimination, favoring SESAME 7592
      	–	mild softening is not accounted for between 2 to 4 Mbar
      	–	 single- and double-shock results display similar behavior

•	 Stoichiometry effects between CH and CH2 are well-predicted by models 

•	 EOS data for NIF ablator material was acquired



Inclusion of a softer a-quartz EOS produces 
~0.2% to 6.0% difference in polystyrene density values
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