

W. Theobald University of Rochester Laboratory for Laser Energetics 50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Summary

FSC

Intense lasers produce more hot electrons in narrow wedge-shaped cavity targets than on flat foils

• The K_{α} emission from solid Cu wedge-shaped, small-mass targets was measured for various opening angles and polarizations.

UR 🔌

- The laser-to-fast-electron coupling efficency is higher with *p*-polarized light in wedge targets than with *s*-polarization.
- 2-D OSIRIS simulations are in agreement with the experimental data for *p*-polarization but not for s-polarization

Collaborators

B. Eichman, S. Ivancic, P. M. Nilson, C. Stoeckl, J. F. Myatt, J. A. Delettrez, C. Ren, J. D. Zuegel, and T. C. Sangster

> University of Rochester Laboratory for Laser Energetics

V. Ovchinnikov, L. Van Woerkom, and R. R. Freeman

Department of Physics, Ohio State University

R. B. Stephens General Atomics

Wedge-cavity targets are used to study the fast-electronconversion efficiency for 2-D cone-like target geometries

- One-piece Cu targets with ~100 \times 100 \times 40- μm^3 volume and 30°, 45°, and 60° opening angles
- Radius of curvature (~1 μ m) smaller than the focal-spot diameter
- Wedge target orientation sets laser polarization

The experiments were performed on the Multi-Terawatt (MTW) Laser Facility at LLE

Laser Focus position

- Laser parameters: $\lambda = 1.053 \ \mu m$ 5 J, 1 ps, 5- μm focus diameter (f/2 optics) 1 × 10¹⁹ W/cm² peak intensity
- Spatially and temporally averaged laser intensity on target: 2 to 5 \times 10^{18} W/cm^2
- OPCPA amplification provides a high temporal contrast (C > 10⁸)

^{*}A. J. MacKinnon et al., Phys. Rev. Lett. 88, 215006 (2002);

J. Myatt et al., Phys. Plasmas 14, 056301 (2007);

P. M. Nilson et al., Phys Plasmas 15, 056308 (2008).

A spherical Bragg crystal imager recorded spatially resolved the Cu K $_{\alpha}$ emission

The single-hit CCD and the HOPG provide absolute photon numbers to infer the conversion efficiency* FSC

- K-photon generation calculated as in an infinite medium
- Relativistic K-shell-ionization cross sections included
- Classical slowing-down approximation (CSDA)
- Exponential hot-electron distribution with ponderomotive scaling

^{*}W. Theobald *et al.*, Phys. Plasmas <u>13</u>, 043102 (2006). P. M. Nilson *et al.*, Phys. Plasmas 15, 056308 (2008).

The conversion efficiency of laser-to-fast-electron energy depends on wedge opening angle and laser polarization FSC

LLE

Fast-electron-conversion efficiency increases for the narrow wedge targets compared to flat foils.

Two-dimensional OSIRIS* simulations are in agreement with the experimental data for *p*-polarization but not for *s*-polarization

Intense lasers produce more hot electrons in narrow wedge-shaped cavity targets than on flat foils

- The K_{α} emission from solid Cu wedge-shaped, small-mass targets was measured for various opening angles and polarizations.
- The laser-to-fast-electron coupling efficency is higher with *p*-polarized light in wedge targets than with *s*-polarization.
- 2-D OSIRIS simulations are in agreement with the experimental data for *p*-polarization but not for s-polarization

OSIRIS* 2-D PIC simulations were performed for the wedge targets

- Laser pulse: $I = 10^{19}$ W/cm², 1 ps, 4- μ m focus, Gaussian profiles in space and time
- Transversal: periodic boundary condition for both fields and particles

Longitudinal: thermal boundary conditions for particles and open boundary for fields

 Linear-density ramp to 10 n_{cr} in 0.1 μm to 10 μm

FSC

• The total laser absorption into electrons with kinetic energy above 8 keV was calculated

UR

Low-density plasma generation from laser prepulses plays an important role in fast-electron generation FSE

- 2-D OSIRIS simulations yield higher conversion efficiency for longer density ramps:
 - 1-D hydro simulations with laser prepulse show that the angle of incidence affects the plasma profile
 - Larger angles produce a steeper profile between critical and tenth-critical density
- The plasma scale length might change with wedge angle
 - 2-D DRACO hydro simulations will be carried out to assess pre-plasma in the cavity