Intense Laser-to-Fast-Electron Coupling Efficiency
in Wedge-Shaped Cavity Targets
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Summary

Intense lasers produce more hot electrons in narrow
wedge-shaped cavity targets than on flat foils
FS€ CLE

 The K, emission from solid Cu wedge-shaped, small-mass targets was
measured for various opening angles and polarizations.

* The laser-to-fast-electron coupling efficency is higher with p-polarized
light in wedge targets than with s-polarization.

e 2-D OSIRIS simulations are in agreement with the experimental data for
p-polarization but not for s-polarization
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Wedge-cavity targets are used to study the fast-electron-
conversion efficiency for 2-D cone-like target geometries

Front view Side view

e One-piece Cu targets with ~100 X 100 X 40-xms3 volume
and 30°, 45°, and 60° opening angles

e Radius of curvature (~1 um) smaller than the focal-spot diameter
 Wedge target orientation sets laser polarization
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The experiments were performed on the Multi-Terawatt

(MTW) Laser Facility at LLE
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Small-mass Cu targets are
in the refluxing regime.*

LLE
Increased

Wedge focus area

Focus
position

e Laser parameters: A = 1.053 um
5 J, 1 ps, 5-um focus diameter

(f/2 optics) 1 X 1019 W/cm?2 peak intensity

e Spatially and temporally averaged laser

intensity on target: 2to 5 X 1018 W/cm?2

 OPCPA amplification provides a high
temporal contrast (C > 108)

*A. J. MacKinnon et al., Phys. Rev. Lett. 88, 215006 (2002);

J. Myatt et al., Phys. Plasmas 14, 056301 (2007);
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P. M. Nilson et al., Phys Plasmas 15, 056308 (2008).



A spherical Bragg crystal imager recorded spatially
resolved the Cu K, emission
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Homogeneous emission; 8-keV _K_O_‘_ fl_u_o_r/_;
indicates hot-electron CCD-~~ A __---~~ '\ Bragg
refluxing in the targets. R A B crystal
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The single-hit CCD and the HOPG provide absolute
photon nhumbers to infer the conversion efficiency*
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K-photon generation calculated as in an infinite medium
Relativistic K-shell-ionization cross sections included

Classical slowing-down approximation (CSDA)

Exponential hot-electron distribution with ponderomotive scaling

*W. Theobald et al., Phys. Plasmas 13, 043102 (2006).
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The conversion efficiency of laser-to-fast-electron energy

depends on wedge opening angle and laser

polarization
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Fast-electron-conversion efficiency increases for
the narrow wedge targets compared to flat foils.
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Two-dimensional OSIRIS* simulations are in agreement
with the experimental data for p-polarization but not for

s-polarization
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Experiment Simulation
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Cavity wedge opening angle (°)

Cavity wedge opening angle (°)

p-polarization absorption is higher than s-polarization
due to resonance absorption/Brunel absorption.

*R. A. Fonseca et al., in Computational Science-ICCS 2002 (Springer, Berlin, 2002), p. 343.



Summary/Conclusions
Intense lasers produce more hot electrons in narrow
wedge-shaped cavity targets than on flat foils

FSE€ CLE

 The K, emission from solid Cu wedge-shaped, small-mass targets was
measured for various opening angles and polarizations.

* The laser-to-fast-electron coupling efficency is higher with p-polarized
light in wedge targets than with s-polarization.

e 2-D OSIRIS simulations are in agreement with the experimental data for
p-polarization but not for s-polarization
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OSIRIS* 2-D PIC simulations were performed
for the wedge targets

FS€ LLE
Initial density profile
e Laser pulse: I =1019W/cm2,1 ps, 4-um 9m of 45 target
focus, Gaussian profiles in space and time g .
* Transversal: periodic boundary condition E 51
for both fields and particles = 5
Longitudinal: thermal boundary conditions E

for particles and open boundary for fields | A
1357 91113
e Linear-density ramp to 10 n, x-position (um)
in 0.1 um to 10 um Wedge, 30°, p-pol,
peak laser intensity

* The total laser absorption into electrons with  $ 107¢ w w
kinetic energy above 8 keV was calculated S 106} T, =2.3 MeV
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Low-density plasma generation from laser prepulses
plays an important role in fast-electron generation
FS€ LLE

Linear density ramp from e 2-D OSIRIS simulations yield higher
0 to 10 n¢y, 0° incidence conversion efficiency for longer

R 25 T density ramps:
& 20 L | — 1-D hydro simulations with
§ laser prepulse show that the
@ angle of incidence affects the
% 15 . plasma profile
= — Larger angles produce a
B 10 - | steeper profile between critical
o and tenth-critical density
c 5 —
o
o * The plasma scale length might
0 | | | | | change with wedge angle
o 2 4 6 8 10 12 — 2-D DRACO hydro simulations

Density ramp (um) will be carried out to assess
pre-plasma in the cavity
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