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A comprehensive scientific program to study advanced 
ignition concepts is being pursued at LLE

E17291

•	 Two advanced concepts beyond conventional “hot-spot “ ignition  
are explored at LLE:

		  –	 “Shock” ignition1

		  –	 “Fast” ignition2

•	 Experiments with shock-ignition pulses show a 4# improvement in 
yield and 30% more areal density compared to conventional pulses.

•	 Fast-ignition-relevant experiments show favorable hydro performance 
of cone-in-shell targets and a ~20% conversion efficiency from short-
pulse laser energy into electrons.

•	 OMEGA EP, a new high-energy, ultrashort-pulse laser system was 
completed in April 2008 and is used for advanced ignition experiments.

Summary

1R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). 
2M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
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•	 Motivation
	  

	 –	 “Shock” ignition uses a shock generated by the compression driver 		
		  later in the implosion to reduce the energy required for ignition 
 
	 –	 “Fast” ignition separates the fuel assembly and heating using an 			
		  ultrafast laser to heat the fuel in addition to a compression driver 

•	 Shock-ignition experiments

• 	Fast-ignitor-relevant experiments

• 	OMEGA EP Laser System



Fast ignition and shock ignition can trigger ignition
in massive (slow) targets, leading to high gains*
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*R. L. McCrory et al., Phys. Plasmas 15, 055503 (2008).



A shaped laser pulse with a high-intensity spike  
launches a strong shock wave for ignition*
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The ignitor shock wave significantly increases its strength 
as it propagates through the converging shell.
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*R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
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A conventional hot-spot target requires ~3# more energy  
than a shock-ignition target
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A high-velocity hot-spot design achieves a gain of 49 at 1 MJ.*

*T. J. B. Collins, Phys. Plasmas 14, 056308 (2007).



The two viable fast-ignition concepts share fundamental 
issues: hot-electron production and transport to the core
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Channeling Concept1 Cone-Focused Concept2

e– 

Hole 
boring Ignition 

10 ps Light pressure
bores hole in

coronal plasma ~1-MeV electrons
heat DT fuel to
~10 keV, ~300 g/cc   

Au cone 

Single ignitor 
beam: 10 ps 

1M. Tabak et al., Phys. Plasmas 1, 1626 (1999). 
2P. A. Norreys, Phys. Plasmas 7, 3721 (2000).
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In integrated simulations an optimized target1,2 ignites  
with a gain = 100 when heated with 43 kJ of electrons

TC7792d

1R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005). 
2A. A. Solodov (YI1.00002).
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Snapshots at t = 8 ps after the beginning of the e-beam
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1L. Gremillet et al., Phys. Plasmas 9, 941 (2002).
2J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006).

Total e-beam energy = 43 kJ, angular divergence = 20°

FSC
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•	 Motivation 
	

•	 Shock-ignition experiments 

		  –	 CH shells have been used on OMEGA to test the performance  
		  of shock-ignition pulse shapes

		  –	 timing of the shocks is critical to optimize the performance of  
		  the implosion

		  –	 with optimized shock timing the neutron yields improve by up  
		  to a factor of 4, the areal density by up to 30%

• 	Fast-ignitor-relevant experiments

•	 OMEGA EP Laser System



CH shells have been imploded on OMEGA to test
the performance of shock-ignition pulse shapes 
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The neutron yield increases considerably when  
a shock is launched at the end of the pulse. 
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The correct timing of the shock waves is crucial  
for optimized implosion performance*
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*W. Theobald, Phys. Plasmas 15, 056306 (2008).



The picket and spike timing has a significant effect  
on the measured neutron yield and areal density GtRH
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FSC

The shock-ignition implosions show an improved performance  
with respect to areal density and neutron yields.
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•	 Motivation

•	 Shock-ignition experiments
		
• 	Fast-ignitor-relevant experiments

		  –	 fuel-assembly experiments with cone in shell targets show good 		
		  performance and no early filling of the cone with plasma

		  –	 a conversion efficiency from laser energy into hot electrons of 		
		  ~20% was inferred using two independent experimental methods

•	 OMEGA EP Laser System



Cone-in-shell fuel-assembly experiments  
were performed on OMEGA*
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The measured areal density was >60% of the 1-D prediction for a full sphere.
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*C. Stoeckl, Phys. Plasmas 14, 112702 (2007).



Shock breakout is close to peak compression in the  
low-adiabat experiments with a 15-nm-thick cone tip

E17295 *J. A. Oertel, Rev. Sci. Inst. 70, 803 (1999).
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•	 Ka production is 
insensitive to fast-
electron energy 
spectrum and range  
for I > 1018 W/cm2

•	 Cu targets: 
500 × 500 × 20 nm3

*W. Theobald et al., Phys. Plasmas 13, 043102 (2006). 

A conversion efficiency of hL"e = 20% into energetic 
electrons can be inferred from Ka yields
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Target bulk heating affects L"K and M"K  
electron transitions1,2
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•	 Inelastic electron–electron 
collisions heat the target.

•	 Collisional �ionization �with 
thermal �background plasma 
occurs.

•	 Te > 100 eV causes significant 
M-shell depletion.

•	 Target heating is inferred  
from Kb/Ka.

1J. Myatt et al., Phys. Plasmas 14, 056301 (2007).
2G. Gregori et al., Contrib. Plasma Phys. 45, 284 (2005).
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A comparison of Kb/Ka to LSP calculations gives 
hL"e c 20% consistent with the Ka-yield measurements*
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•	 Provides a self-consistency 
check on hL"e

•	 Confirms that the  
dominant physics in  
the simple refluxing  
Ka-production model are 
correctly accounted for.

*P. M. Nilson et al., Phys. Plasmas 15, 056308 (2008).

	 Solid density targets are heated to temperatures 
greater than 200 eV with 5 J of laser energy.
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•	 Motivation

• 	Shock-ignition experiments

• 	Fast-ignitor-relevant experiments

•	 OMEGA EP Laser System
		   

	 –	 OMEGA EP can provide up to 2.6 kJ in 10 ps and 2.6 kJ in 100 ps  
		  into the OMEGA target chamber for integrated FI experiments

		  –	 Simulations of integrated FI experiments using OMEGA EP have shown  
		  core heating of up to 1 keV

		  –	 LLE has the infrastructure in place to field cryogenic cone-in-shell targets



Short-pulse OMEGA EP beams can be directed either  
to OMEGA or to the new OMEGA EP target chamber

Short pulse combined Beam 1 Beam 2
IR energy (kJ) 2.6 2.6
Pulse duration  
at full energy (ps) 10 to 100 80 to 100

Focusing (diam) >80% in  
20 nm

>80% in  
40 nm

Intensity (W/cm2) 3 × 1020 2 × 1018

G6957u

In October 2008 OMEGA EP delivered 1.3 kJ in 10 ps to a target.



No short pulse With short pulse

Integrated FI experiments with cone-in-shell targets  
have started on OMEGA

E17408

CD shell ~870-nm diam

Driver energy ~18 kJ

Short pulse ~1.3 kJ

Pulse duration ~10 ps

Focus ~40-nm diam

•	 The hard x-rays produced by the short-pulse interaction  
saturate the current neutron detectors.



With 2.6 kJ of short-pulse energy the hot electrons are 
predicted to heat up the core by up to 1 keV*

E16811b
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With hot electrons the neutron yield increases from 1.6 × 109 to 5 × 109.

*A. A. Solodov (YI1.00002).

Snapshots at t = 6 ps after the beginning of the e-beam
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LLE has the infrastructure to field cryogenic  
DT-filled fast-ignitor targets
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Summary/Conclusions

1R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). 
2M. Tabak et al., Phys. Plasmas 1, 1626 (1994).

A comprehensive scientific program to study advanced 
ignition concepts is being pursued at LLE

•	 Two advanced concepts beyond conventional “hot-spot “ ignition  
are explored at LLE:

		  –	 “Shock” ignition1

		  –	 “Fast” ignition2

•	 Experiments with shock-ignition pulses show a 4# improvement in 
yield and 30% more areal density compared to conventional pulses.

•	 Fast-ignition-relevant experiments show favorable hydro performance 
of cone-in-shell targets and a ~20% conversion efficiency from short-
pulse laser energy into electrons.

•	 OMEGA EP, a new high-energy, ultrashort-pulse laser system was 
completed in April 2008 and is used for advanced ignition experiments.


