Advanced Ignition Experiments on OMEGA

C. Stoeckl University of Rochester Laboratory for Laser Energetics 50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Summary

A comprehensive scientific program to study advanced ignition concepts is being pursued at LLE

- Two advanced concepts beyond conventional "hot-spot " ignition are explored at LLE:
 - "Shock" ignition¹
 - "Fast" ignition²
- Experiments with shock-ignition pulses show a $4\times$ improvement in yield and 30% more areal density compared to conventional pulses.
- Fast-ignition-relevant experiments show favorable hydro performance of cone-in-shell targets and a ~20% conversion efficiency from shortpulse laser energy into electrons.
- OMEGA EP, a new high-energy, ultrashort-pulse laser system was completed in April 2008 and is used for advanced ignition experiments.

UR 🔌

¹R. Betti *et al.*, Phys. Rev. Lett. <u>98</u>, 155001 (2007). ²M. Tabak *et al.*, Phys. Plasmas <u>1</u>, 1626 (1994).

K. S. Anderson, T. R. Boehly, R. Betti,* J. A. Delettrez, V. N. Goncharov,
V. Yu. Glebov, F. J. Marshall, R. L. McCrory*, D. D. Meyerhofer,* J. F. Myatt,
P. M. Nilson, T. C. Sangster, A. A. Solodov, M. Storm, W. Theobald,
B. Yaakobi, and C. D. Zhou

University of Rochester, Laboratory for Laser Energetics, Fusion Science Center *Depts. of Mechanical Engineering and Physics, University of Rochester

> J. A. Frenje and R. D. Petrasso Massachusetts Institute of Technology

A. J. MacKinnon, P. Patel Lawrence Livermore National Laboratory

> P. A. Norreys Rutherford Appleton Laboratory

> > R. B. Stephens General Atomics

- Motivation
 - "Shock" ignition uses a shock generated by the compression driver later in the implosion to reduce the energy required for ignition
 - "Fast" ignition separates the fuel assembly and heating using an ultrafast laser to heat the fuel in addition to a compression driver
- Shock-ignition experiments
- Fast-ignitor-relevant experiments
- OMEGA EP Laser System

Fast ignition and shock ignition can trigger ignition in massive (slow) targets, leading to high gains*

^{*}R. L. McCrory et al., Phys. Plasmas <u>15</u>, 055503 (2008).

A shaped laser pulse with a high-intensity spike launches a strong shock wave for ignition*

Time

Spike shock wave

The ignitor shock wave significantly increases its strength as it propagates through the converging shell.

A conventional hot-spot target requires $\sim 3 \times$ more energy than a shock-ignition target

*T. J. B. Collins, Phys. Plasmas <u>14</u>, 056308 (2007).

The two viable fast-ignition concepts share fundamental issues: hot-electron production and transport to the core

¹M. Tabak *et al.*, Phys. Plasmas <u>1</u>, 1626 (1999). ²P. A. Norreys, Phys. Plasmas <u>7</u>, 3721 (2000).

In integrated simulations an optimized target^{1,2} ignites with a gain = 100 when heated with 43 kJ of electrons FSC

Gaussian, relativistic-Maxwellian e-beam **FWHM** 30 µm Duration au10 ps 300-kJ fuel **T**e 2 MeV CH assembly **20° Divergence half-angle** 2 *µ*m Distance to the target 125 *µ*m CH(DT)₆ 146 μm 150 DT 340 *µ*m ice 100 *r (µ*m) DT 30 µm gas 50 506 μm 0 e-beam 0 -50 50 0 ne **x** (μm)

> ¹R. Betti and C. Zhou, Phys. Plasmas <u>12</u>, 110702 (2005). ²A. A. Solodov (YI1.00002).

The self-generated magnetic field collimates the electron beam^{1,2}

Total e-beam energy = 43 kJ, angular divergence = 20°

¹L. Gremillet et al., Phys. Plasmas <u>9</u>, 941 (2002).

²J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion <u>46</u>, L25 (2006).

- Motivation
- Shock-ignition experiments
 - CH shells have been used on OMEGA to test the performance of shock-ignition pulse shapes
 - timing of the shocks is critical to optimize the performance of the implosion
 - with optimized shock timing the neutron yields improve by up to a factor of 4, the areal density by up to 30%
- Fast-ignitor-relevant experiments
- OMEGA EP Laser System

CH shells have been imploded on OMEGA to test the performance of shock-ignition pulse shapes FSE

The correct timing of the shock waves is crucial for optimized implosion performance*

*W. Theobald, Phys. Plasmas 15, 056306 (2008).

The picket and spike timing has a significant effect on the measured neutron yield and areal density $\langle \rho R \rangle$

The shock-ignition implosions show an improved performance with respect to areal density and neutron yields.

- Motivation
- Shock-ignition experiments
- Fast-ignitor-relevant experiments
 - fuel-assembly experiments with cone in shell targets show good performance and no early filling of the cone with plasma
 - a conversion efficiency from laser energy into hot electrons of ~20% was inferred using two independent experimental methods
- OMEGA EP Laser System

Cone-in-shell fuel-assembly experiments were performed on OMEGA*

Shock breakout is close to peak compression in the low-adiabat experiments with a 15- μ m-thick cone tip

*J. A. Oertel, Rev. Sci. Inst. <u>70</u>, 803 (1999).

A conversion efficiency of $\eta_{L \to e} = 20\%$ into energetic electrons can be inferred from K_{α} yields

- K_{α} production is insensitive to fastelectron energy spectrum and range for $I > 10^{18}$ W/cm²
- Cu targets: $500 \times 500 \times 20 \ \mu m^3$

Target bulk heating affects $L \rightarrow K$ and $M \rightarrow K$ electron transitions^{1,2}

- Inelastic electron–electron collisions heat the target.
- Collisional ionization with thermal background plasma occurs.
- T_e > 100 eV causes significant M-shell depletion.
- Target heating is inferred from K_β/K_α.

¹J. Myatt *et al.*, Phys. Plasmas <u>14</u>, 056301 (2007). ²G. Gregori *et al.*, Contrib. Plasma Phys. <u>45</u>, 284 (2005).

A comparison of K_{β}/K_{α} to *LSP* calculations gives $\eta_{L \to e} \approx 20\%$ consistent with the K_{α} -yield measurements*

Solid density targets are heated to temperatures greater than 200 eV with 5 J of laser energy.

- Motivation
- Shock-ignition experiments
- Fast-ignitor-relevant experiments
- OMEGA EP Laser System
 - OMEGA EP can provide up to 2.6 kJ in 10 ps and 2.6 kJ in 100 ps into the OMEGA target chamber for integrated FI experiments
 - Simulations of integrated FI experiments using OMEGA EP have shown core heating of up to 1 keV
 - LLE has the infrastructure in place to field cryogenic cone-in-shell targets

Short-pulse OMEGA EP beams can be directed either to OMEGA or to the new OMEGA EP target chamber

In October 2008 OMEGA EP delivered 1.3 kJ in 10 ps to a target.

Integrated FI experiments with cone-in-shell targets have started on OMEGA

No short pulse

CD shell	~870- <i>µ</i> m diam
Driver energy	~18 kJ
Short pulse	~1.3 kJ
Pulse duration	~10 ps
Focus	~40- μ m diam

LL

With short pulse

• The hard x-rays produced by the short-pulse interaction saturate the current neutron detectors.

With 2.6 kJ of short-pulse energy the hot electrons are predicted to heat up the core by up to 1 keV*

With hot electrons the neutron yield increases from 1.6×10^9 to 5×10^9 .

*A. A. Solodov (YI1.00002).

LLE has the infrastructure to field cryogenic DT-filled fast-ignitor targets

Summary/Conclusions

A comprehensive scientific program to study advanced ignition concepts is being pursued at LLE

- Two advanced concepts beyond conventional "hot-spot " ignition are explored at LLE:
 - "Shock" ignition¹
 - "Fast" ignition²
- Experiments with shock-ignition pulses show a $4\times$ improvement in yield and 30% more areal density compared to conventional pulses.
- Fast-ignition-relevant experiments show favorable hydro performance of cone-in-shell targets and a ~20% conversion efficiency from shortpulse laser energy into electrons.
- OMEGA EP, a new high-energy, ultrashort-pulse laser system was completed in April 2008 and is used for advanced ignition experiments.

UR 🔌

¹R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). ²M. Tabak et al., Phys. Plasmas 1, 1626 (1994).