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A self-generated resistive magnetic field collimates  
the hot electrons and increases the coupling efficiency 
to the target

TC7788b

•	 The hybrid-PIC code LSP1 and the fluid code DRACO2 have been 
integrated for simulations of hot-electron transport and ignition 
for direct-drive, fast-ignition fusion targets

•	 Integrated simulations show ignition of optimized spherically 
symmetric targets3 by a 43-kJ, 2-MeV Maxwellian electron beam.

•	 Simulations of plastic cone-in-shell targets designed for 
OMEGA-integrated experiments show a temperature increase  
of 1 keV and a neutron yield of 4.5 × 109.

Summary

1D. R. Welch et al., Phys. Plasmas 13, 063105 (2006). 
2P. B. Radha et al., Phys. Plasmas 12, 056307 (2005).
3R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).

FSC

Collimation by the resistive magnetic field 
reduces the energy required for ignition.
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Modeling the entire fast-ignition experiment requires 
resolving very different spatial and temporal scales  
and using different types of codes
FSC

TC8133

•	 Target implosion is simulated 
using hydrocodes.

•	 Generation of hot electrons by  
a petawatt laser pulse interacting 
with a solid target or coronal 
plasma is simulated using 
particle-in-cell (PIC) codes.

•	 Hot-electron transport to the target 
core is simulated using hybrid-PIC 
or Monte Carlo codes.

Implosion

Ignition

Fast
electrons

Laser
We have integrated the 
hydrocode DRACO and the 
hybrid-PIC code LSP to model 
fast-ignition experiments.



LSP simulates the hot-electron transport and energy deposition; 
DRACO simulates the target hydrodynamics and burn

TC7791c

•	 DRACO1

–	 2-D cylindrically symmetric hydrodynamic code
		  –  includes all the necessary physics for ignition and burn  

	     of the imploded capsules

•	 LSP2

–	 2-D/3-D implicit-hybrid PIC code
–	 hybrid fluid-kinetic description for plasma electrons 
–	 intra- and inter-species collisions based on modified Spitzer rates 
–	 ideal gas equation of state

FSC
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1P. B. Radha et al., Phys. Plasmas 12, 056307 (2005). 
2D. R. Welch et al., Phys. Plasmas 13, 063105 (2006).



In LSP, hot electrons are promoted from cold plasma 
electrons with mean energy determined by the 
ponderomotive scaling1,2
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1B. Chrisman, Y. Sentoku, and A. J. Kemp, Phys. Plasmas 15, 056309 (2008).
2S. C. Wilks and W. L. Kruer, IEEE J. Quantum Electron. 33, 1954 (1997).

Fast
electrons

Laser

np is the plasma electron density, nc is the critical density.



Previous solid-target experiments1 suggested that 
a collimation of hot electrons occurs at low laser 
intensities and energies only

TC8306

•	 Collimation was observed in plastic- 
and glass-target experiments with  
I ~ 1019 W/cm2, E ~ 10 J (Refs. 1–3).

•	 Later experiments using Al, Cu, 
and plastic targets and more 
energetic laser pulses showed 
the electron divergence angle 
increased with laser intensity.4

1Tatarakis et al., Phys. Rev. Lett. 81, 999 (1998).
2Borghesi et al., Phys. Rev. Lett. 83, 4309 (1999).
3Gremillet et al., Phys. Rev. Lett. 83, 5015(1999).
4J. S. Green et al., Phys. Rev. Lett. 100, 015003 (2008), and references therein.
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LSP simulations showed increasing divergence angles 
with intensity and energy for planar plastic targets
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I = 6.5 # 1018 W/cm2, r0 = 8 nm (FWHM),
x = 5 ps, E = 25 J (in 3-D)

I = 3 # 1019 W/cm2, r0 = 20 nm,
x = 5 ps, E = 720 J (in 3-D)

Hot-electron 
density

(cm–3 # 1021)

Magnetic 
field (MG)

Planar geometry, Maxwellian electrons, GEH from ponderomotive  
scaling, angular divergence of 30º (half angle).
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Magnetic hot-electron collimation is observed with LSP 
simulations for compressed plastic targets
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I = 3 # 1019 W/cm2, r0 = 20 nm, x = 5 ps, E = 720 J 
initial divergence half-angle = 30°
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An imploded optimized fast-ignition target1 is heated by a  
2-MeV, 30-nm-FWHM electron beam in the integrated simulation2

TC7792e
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1R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).
2A. A. Solodov et al., Phys. Plasmas 15, 112702 (2008).



The integrated simulation shows electron-beam collimation 
by the self-generated resistive magnetic field, resistive 
filamentation,1,2 and ignition by a 43-kJ e-beam

TC7793f

FSC

1L. Gremillet et al., Phys. Plasmas 9, 914 (2002).
2J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion 46, L25 (2006);  
  Journal of Physics 112, 022055 (2008).

Initial divergance half-angle = 20º

Snapshots at t = 8 ps after the beginning of the e-beam
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A simulation with the magnetic field artificially 
suppressed predicts a minimum hot-electron energy for 
ignition of 92 kJ for the same electron-beam properties

TC8046c

Beam collimation by the resistive magnetic field 
reduces the energy required for ignition.

FSC
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The minimum energy required for ignition increases  
with the initial beam divergence angle
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Theoretical models of electron-beam collimation  
and resistive filamentation have been developed1,2

TC8246

1A. R. Bell and R. J. Kingham, Phys. Rev. Lett. 91, 035003 (2003).
2L. Gremillet et al., Phys. Plasmas 9, 914 (2002).
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Integrated OMEGA experiments using low-adiabat 
implosions of plastic cone-in-shell targets* and PW 
heating pulses from OMEGA EP have begun

TC8134a

FSC

*C. Stoeckl et al., Phys. Plasmas 14, 112702 (2007).
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We have performed simulations of target heating  
for integrated OMEGA experiments

TC8135a

•	 Hydrodynamic simulations of cone-in-shell target implosions 
predict areal densities sufficient to stop MeV electrons*

•	 Electrons injected at maximum areal density

FSC

*K. S. Anderson (C04.00005).
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Hot electrons are collimated by the resistive magnetic 
field in the OMEGA integrated simulation

TC8136b

Snapshots at t = 6 ps after the beginning of the e-beam
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FSC

Hot electrons are collimated for an angular spread as 
high as 60º half angle in the OMEGA integrated simulation

TC8136c

Snapshots at t = 6 ps after the beginning of the e-beam

r 
(n

m
)

0

100

200

300

z (nm)
0 20–20 40 60 80

Plasma density (g/cm3)

r 
(n

m
)

0

1

0

2

z (nm)
0 20–20 40 60 80

Electron-beam density (×1021 cm–3)

r 
(n

m
)

0
–20

20

0

z (nm)
0 20–20 40 60 80

Azimuthal magnetic field (MG)

GEhH = 2 MeV
Angular divergence = 60º (half-angle)

40

20

40

20

40

20



Close to the core, hot electrons are deflected by the 
resistive magnetic field generated in the escaping  
hot-spot gas

TC8248
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Hot electrons can miss the target if they are injected  
60 ps earlier than at maximum areal density
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Snapshots at t = 6 ps after the beginning of the e-beam
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The hot electrons deposit 25% to 55% of their energy  
in the dense core (t > 80 g/cm3)
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Hot electrons heat up the target by up to 1 keV 
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Plasma temperature increase (keV)
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Hot-electron transport through the cone  
must be addressed

TC8252

•	 LSP can simulate the hot-electron transport through the cone, provided 
ionization of the high-Z cone material is modeled properly (using QEOS1).

•	 Hot-electron beams can spread out in the cone due to scattering by 
high-Z ions.

•	 Tens to hundreds megagauss resistive magnetic fields are expected 
because of a high collisionality of the return current.

•	 In such fields, the Alfvén limit can be reached for the filaments or for the 
whole beam.

•	 Magnetic fields at plasma discontinuities (inner cone surface or cone–
plasma interface) can cause a surface transport and/or trapping of hot 
electrons.

•	 Extended regions of pre-plasma inside the cone increase the thickness  
of the high-Z material through which the hot electrons propagate.

1R. M. More et al., Phys. Fluids 31, 3059 (1988).
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3R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).

Summary/Conclusions

A self-generated resistive magnetic field collimates  
the hot electrons and increases the coupling efficiency 
to the target

•	 The hybrid-PIC code LSP1 and the fluid code DRACO2 have been 
integrated for simulations of hot-electron transport and ignition 
for direct-drive, fast-ignition fusion targets

•	 Integrated simulations show ignition of optimized spherically 
symmetric targets3 by a 43-kJ, 2-MeV Maxwellian electron beam.

•	 Simulations of plastic cone-in-shell targets designed for 
OMEGA-integrated experiments show a temperature increase  
of 1 keV and a neutron yield of 4.5 × 109.
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Collimation by the resistive magnetic field 
reduces the energy required for ignition.


