Numerical Investigation of Initial Low-Adiabat OMEGA Polar-Drive Implosions

50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

A. Shvydky University of Rochester Laboratory for Laser Energetics

Concurrence of measured and simulated framed x-ray radiographs demonstrate control of OMEGA low-adiabat polar-drive* implosion symmetry

- Work continues on the verification of the NIF polar-drive (PD) ignition design on OMEGA.
- Earlier experiments optimizing high-adiabat PD implosions were successful in recovering the yield of symmetric implosions done with identical targets.
- Improved numerical sliding-grid algorithm allows better resolution around the Saturn ring and at the ablation surface within the target.
- Experiments are being designed that will demonstrate that low-adiabat PD implosions recover symmetric-illumination yields.

Related Talk: F. J. Marshall (NO5.00001).

^{*}R. S. Craxton et al., Phys. Plasmas <u>12</u>, 056304 (2005).

F. J. Marshall et al., J. Phys. IV France <u>133</u>, 153 (2006).

J. Marozas et al., Phys. Plasmas <u>13</u>, 056311 (2006).

Collaborators

P. W. McKenty F. J. Marshall I. V. Igumenshchev R. Epstein J. A. Marozas R. S. Craxton T. C. Sangster S. Skupsky R. L. McCrory University of Rochester Laboratory for Laser Energetics

Previously high-adiabat PD experiments on OMEGA achieved near-symmetric-illumination yields*

*F. J. Marshall et al., Bull. Am. Phys. Soc. 51, 106 (2006), paper GO2.

Initial low-adiabat PD experiments were performed with two-beam repointing configurations

Eulerian 2-D DRACO simulations with 3-D laser ray trace resolve plasma flow and laser refraction around the ring

Mass density (log scale) 400 (mm) Z 0 -400 *t* = 800 ps 0 500 1000 $X (\mu m)$

- **High-resolution** Godunov-type scheme
- Nonuniform spherical grid with improved slidinggrid algorithm
- Multigroup radiation-diffusion transport

The first beam-pointing case (90, 150, 150- μ m offset) is more appropriate for driving standard PD targets

The first beam-pointing case (90, 150, 150- μ m offset) overdrives the Saturn target equator, producing a prolate implosion UR

The second beam-pointing case (90, 120, 120- μ m offset) underdrives the standard target equator, producing an oblate implosion UR

The second beam-pointing case (90, 120, 120- μ m offset) produces a more-uniform Saturn target implosion

*Spect3D: Prism Computational Sciences, Inc., Madison, WI

LLE

Concurrence of measured and simulated framed x-ray radiographs demonstrate control of OMEGA low-adiabat polar-drive* implosion symmetry

- Work continues on the verification of the NIF polar-drive (PD) ignition design on OMEGA.
- Earlier experiments optimizing high-adiabat PD implosions were successful in recovering the yield of symmetric implosions done with identical targets.
- Improved numerical sliding-grid algorithm allows better resolution around the Saturn ring and at the ablation surface within the target.
- Experiments are being designed that will demonstrate that low-adiabat PD implosions recover symmetric-illumination yields.

Related Talk: F. J. Marshall (NO5.00001).

^{*}R. S. Craxton et al., Phys. Plasmas <u>12</u>, 056304 (2005).

F. J. Marshall et al., J. Phys. IV France <u>133</u>, 153 (2006).

J. Marozas et al., Phys. Plasmas <u>13</u>, 056311 (2006).