Two-Plasmon-Decay Instability in Direct-Drive-Implosion Experiments

W. Seka University of Rochester Laboratory for Laser Energetics 50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Summary

The two-plasmon-decay (TPD) instability is seen in most direct-drive experiments with plasmons with large range of k's

• The TPD instability is seen via $3\omega/2$, $\omega/2$, and hard x-ray emission.

UR 🔌

- Threshold is consistent with absolute instability.
- TPD plasmons are seen between $0.2 \le k_{\perp}/k_0 \le 2.0$ ($k\lambda_D < 0.25$).
- Large-*k* plasmons contradict predictions of absolute instability $(k_{\perp}/k_0 \lesssim 0.2)$.

D. H. Edgell, J. F. Myatt, A. V. Maximov, R. S. Craxton, R. W. Short, V. N. Goncharov, A. Simon, and R. E. Bahr

University of Rochester Laboratory for Laser Energetics

H. Baldis

University of California–Davis Lawrence Livermore National Laboratory

The linear TPD theory provides little guidance beyond threshold

- From linear TPD theory, one obtains
 - threshold parameter $\sigma_{\text{th}} = I_{14}L_{n,\mu m}/(230 \times T_{e,keV})$

• For current ICF parameters,

–
$$T_{
m e}$$
 ~ 1.5 keV, L_n ~ 150 $\mu{
m m}$ $m
ightarrow$ $I_{
m th}$ ~ 2.0 $imes$ 10¹⁴ W/cm²

UR

The TPD thresholds as deduced from $3\omega/2$ and $\omega/2$ emission are remarkably consistent with $\sigma_{th} = 1$ based on linear theory

The TPD thresholds as deduced from $3\omega/2$ and $\omega/2$ emission are remarkably consistent with $\sigma_{th} = 1$ based on linear theory

The TPD thresholds as deduced from $3\omega/2$ and $\omega/2$ emission are remarkably consistent with $\sigma_{th} = 1$ based on absolute TPD instability

The TPD thresholds correspond to standard theory but the TPD plasma waves do not

- $\sigma_{\rm th}$ based on the absolute instability is consistent with the onset of the TPD instability.
- Plasmons with small *k*'s ($k_{\perp} \le 0.2 k_0$) are seen where expected in $\omega/2$ spectra.
- Plasmons with large k's ($k\lambda_{De} \sim 0.25$) are seen ubiquitously in $3\omega/2$ spectra \rightarrow not predicted by standard absolute instability.

Some specific TPD issues can be addressed via Thomson scattering in planar target experiments

• The importance of the Landau cutoff stands in contrast to SRS experience

Thomson scattering off TPD plasma waves has been optimized for the red component of the $3\omega/2$ spectrum in planar target experiments on OMEGA

Thomson scattering off TPD plasma waves has been optimized for the red component of the $3\omega/2$ spectrum in planar target experiments on OMEGA

Thomson scattering off TPD plasma waves has been optimized for the red component of the $3\omega/2$ spectrum in planar target experiments on OMEGA

Heating the plasma with an additional beam raises λ_{De} and suppresses the TPD previously seen near the Landau cutoff

The two-plasmon-decay (TPD) instability is seen in most direct-drive experiments with plasmons with large range of k's

• The TPD instability is seen via $3\omega/2$, $\omega/2$, and hard x-ray emission.

UR 🔌

- Threshold is consistent with absolute instability.
- TPD plasmons are seen between $0.2 \le k_{\perp}/k_0 \le 2.0$ ($k\lambda_D < 0.25$).
- Large-*k* plasmons contradict predictions of absolute instability $(k_{\perp}/k_0 \lesssim 0.2)$.

A strong blue-shifted Thomson scattered signal is produced when beam 56 TPD plasmons scatter beam 40 (Thomson probe)

