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Shot 48232, Peak intensity: 8 × 1014 W/cm2, CH[10]Al[1]CH[40] 
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Nonlocal* and flux-limited (f = 0.06) thermal transport 
models accurately predict measurements while the 
shock transits the foil

E17420

•	 A CH foil with a buried Al tracer layer was directly irradiated with a square 
or shaped pulse drive with peak intensities of 5 # 1013 to 1 # 1015 W/cm2.

•	 Shock-wave heating and heat-front penetration were measured using 
time-resolved Al 1s–2p absorption spectroscopy to test thermal-transport 
models with the 1-D hydrodynamics code LILAC.

•	 The measured absorption spectra were modeled with PrismSPECT** to 
infer Te and t, assuming uniform conditions in the Al layer (Te ~ 10 to 40 
eV and t ~ 3 to 11 g/cm3).

•	 Lower Te than predicted at late times of the drive was attributed to 
reduced radiative heating caused by lateral heat flow in the corona.

	*	V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
	**	Prism Computational Sciences, Inc. Madison, WI  5371 .
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X-ray absorption spectroscopy of a CH planar target with an 
Al tracer layer was used to test thermal-transport models

E16525b

An in-situ calibration of the x-ray streak camera was performed 
to eliminate background light from the measured signals.
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Heat flux in LILAC is calculated using a flux-limited  
or a nonlocal thermal-transport model

E15064c

LILAC (1-D hydrodynamics code)1

	 •	 Laser absorption with ray trace 

	 •	 Radiation transport

	 •	 Equation of state (SESAME)

	 •	 Thermal transport
			   –	 flux-limited model, 
				    qeff = min (qSH, f # qFS)
			   –	 classical Spitzer flux:2
					     qSH = –ldT
			   –	 free streaming flux:
					     qFS = nTvT
			   –	 flux limiter3 f (0.04 < f < 0.1)
				    (qSH is invalid in plasmas 

with strong Te gradient)

	 •	 Nonlocal model4 (no flux limiter) 
acts like a time-dependent flux 
limiter

1J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).   
2R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).
3J. Delettrez, Can. J. Phys. 64, 932 (1986).
4V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
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The measured spectra were fit with PrismSPECT to infer 
Te and t assuming uniform conditions in the Al layer

E17056

The measured spectra created by the heat front 
were qualitatively compared with the modeled 
spectra to determine the range of Te in the Al layer.
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The LILAC simulations using f = 0.06 and the nonlocal 
model agree with the experimental results for the  
square laser-pulse drive

E17421
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The initial shock-wave heating predicted by LILAC  
using f = 0.06 or the nonlocal model agrees with  
the measurements for the shaped laser pulse drive
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The discrepancies between the measured and predicted 
Te are observed at late times of the drive.



Predicted Te from a 2-D simulation is closer to the 
measurements than the 1-D prediction at late time

E17063

The lateral heat flow in a 2-D geometry results in a 
lower radiative heating of the Al than in 1-D geometry.

48236,
LILAC, DRACO (f = 0.06)
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Summary/Conclusions

	*	V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
	**	Prism Computational Sciences, Inc. Madison, WI  5371 .

Nonlocal* and flux-limited (f = 0.06) thermal transport 
models accurately predict measurements while the 
shock transits the foil

•	 A CH foil with a buried Al tracer layer was directly irradiated with a square 
or shaped pulse drive with peak intensities of 5 # 1013 to 1 # 1015 W/cm2.

•	 Shock-wave heating and heat-front penetration were measured using 
time-resolved Al 1s–2p absorption spectroscopy to test thermal-transport 
models with the 1-D hydrodynamics code LILAC.

•	 The measured absorption spectra were modeled with PrismSPECT** to 
infer Te and t, assuming uniform conditions in the Al layer (Te ~ 10 to 40 
eV and t ~ 3 to 11 g/cm3).

•	 Lower Te than predicted at late times of the drive was attributed to 
reduced radiative heating caused by lateral heat flow in the corona.


