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Abstract
FS€ EEE

The implementation of the magneto-hydrodynamic (MHD) module
in the arbitrary Lagrange-Eulerian (ALE) hydrocode for laser-plasma
simulation DRACO! is described. The MHD block accounts for
convection, diffusion, and generation of the magnetic field by the
thermoelectric/magnetic effects caused by the non-parallel temperature
and density gradients and the Nernst term. The effect of the magnetic
field on the transport coefficients for MHD equations is explicitly
taken into account and the influence of the strong magnetic field on
hydrodynamics and heating of the laser-imploded plasma pellets are
studied.
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Summary

Megagauss magnetic fields are generated
in spherical implosions
FSE LLE

e [sotropic and anisotropic MHD equations are added to the ALE
hydrocode DRACO.

* A generation of the megagauss magnetic field for spherical implosions
is numerically demonstrated.

* The influence of the magnetic field on transport coefficients is analyzed
and the important role of the Nerst term is demonstrated.
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Governing equations for isotropic MHD

(no dependence of transport coefficients on the magnetic field)
UR
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A¢/B¢ representation of the magnetic field in the

cylindrical geometry {r,¢,z} with rotational symmetry
UR
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Advection: Diffusion: Source:

LC|lo(19P\_o (19pP
eloz\n or ar\n oz
e V.B = 0 by construction

J A¢ and B¢ are evolved independently from each other

* The self-generated magnetic field is azimuthal as the source term
goes only in the equation for By
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When implementing:
The advection, diffusion, and source terms are split from each other
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The advection part of the equations for azimuthal

magnetic field and vector potential represented as flow

derivatives and solved on the moving DRACO mesh
FS€

uUR
LLE

Advection contribution:

oA 1
St = Ve rar(rAp)+Varag(rAg)| = | g(rAg)=0

2B+ 2viBy)| = | &[rh)=0

DRACO implementation
A—for cell nodes; B—for cell centers
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Differential operators are discretized

on a non-orthogonal, non-even mesh

FS€ LLE
Symbolic representation:

V= lim %fﬁd§
s—-0 $

e Operators CURL, GRAD, and DIV are discretized by the “control volume”
approach. They are represented as fluxes through the boundaries of
corresponding “control volumes:”

Nodal (A) to centered Centered (B) to nodal
(dA/dr,dA /dz) (dB/dr,dB/dz)
i,j+1
i+t g NESNES I J
i,i i_ 15 ] . i+ 1, ]
o J ] J
i,j ® ®i+1,j

i j—1
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Implementation of the diffusion and source terms
FS€ LLE

aB¢

Diffusion contribution: | —-= =-V x (DBV X B)‘

1. Subroutine rotrotB(i,j,rrB) discretizes the operator V x (DgV x B)
on the mesh by the “control volume” approach.

2. Subroutine Coef(CoeB) calculates the “diagonal” coefficients
CoeBJi,j] at Biai'

3. B at the next step are found from an implicit scheme by the
“hyperSOR” iterative approach:

Bjj=(1-w)-B;j+w-:|BYj! - dt-(rrB—CoeB, ;)B; ;| /(1+dt-CoeB, ;)

Source contribution: 8—{” %?x(

VPe
ne

¢

1. Discretized by the modifed “control volume” technique along the
contour corresponding to the cell’s boundaries.

2. Discretization numerically satisfies VXV f(r, z)‘ =0
to round off errors. ¢

TC8338



Governing equations for anisotropic MHD
(transport coefficients depend on the magnetic field)
FS€ CL)

LLE
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Ohm’s law: E =— en, + en,

Friction force/Diffusion:
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Rj= ang{ain(i-h)+a B x[[xh]-ar B[k ]

>
I
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Thermal force/”’quasi-sources”: | Nernst term

\
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The thermal transport equation for anisotropic MHD

FS€E EEE
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Thermal heat flux:

a1 =—Kh(VTe-h)— Kk, BIhx[VTgxh|-k\(B|hx VT,|=

— k| (B)VTg—kr(B|hxVT,|-(k— &, )h(VTg-h)

Frictional heat flux:

I

=~ e UBTUR(- )+ BT @) x [ x Al + BT B[ x f]} =

~an_(B1 B+ BB < ]+ (BT~ BTU)R( - F)}

Joule heating:
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The equation for azimuthal magnetic field B,
self-generated by gradN X gradT and Nerst terms
for anisotropic MHD

UR
LLE

If Ay (t=0) =0 = Ay (f) = 0, and only By is generated
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The heat-flux limiters for transverse heat conductivities
for the anisotropic case are a generalization of the

limiter for the isotropic case
FS€ CLE

Isotropic case:

3/2
TeTe’ﬁ ‘ NeTeTe T NeTeTe T "eTe/

17 K‘V e’ m Amfp~ m VTeT9~ vm

Anisotropic case:
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Initial input data for DRACO/MHD simulation
of the spherical target implosion driven
by the square laser pulse

UR
FS€ DR
DRACO mesh Imploding shell Initialize_grid
=0
Laser Laser layer 1 = 80 i_cells of DD

layer 2 =50 i_cells of CH
xlay(2) = 0.0018 cm

r (ij) 7 \ Implosion / xlay(1) = 0.0395 cm

j_cells =100 cells

Simulation_input

Initial_laser_uniformity =

i along target radius “Legendre mode”

j: along target circumference mode_num =4
Laser_ampl_perturb =1 x 102

t1=0s power1 =0
t2=10 x 10-10  power2 =25TW
t3=10 x 109 power3 = 25 TW
t4=11 x 109 power4 =0
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Vorticity in a hydrodynamic flow of a conducting
fluid serves as a good indicator of the presence
of a magnetic field

FS€ =B
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Dynamics of self-generated by (gradN X gradT)
azimuthal magnetic field B¢ for isotropic MHD

FS€ LLE
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Dynamics of self-generated (by gradN X gradT and Nernst

terms) azimuthal magnetic field By for anisotropic MHD
FS€ L
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Summary/Conclusions

Megagauss magnetic fields are generated
in spherical implosions
FS€ LLE

e [sotropic and anisotropic MHD equations are added to the ALE
hydrocode DRACO.

* A generation of the megagauss magnetic field for spherical implosions
is numerically demonstrated.

* The influence of the magnetic field on transport coefficients is analyzed
and the important role of the Nerst term is demonstrated.
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