Three-Dimensional Effects in Laser Channeling in Fast-Ignition Targets

G. Li University of Rochester Laboratory for Laser Energetics

50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Summary

A clean channel can be established by a high-intensity laser in the underdense plasma of fast-ignition targets

- Channel advancing in 3-D PIC simulations is faster than in 2-D.
- The difference of channel advancing in 2-D and 3-D is due to the difference in laser self-focusing and ponderomotive force.
- Electrons are heated to relativistic temperatures, which reduces laser-plasma coupling in the channel.
- A low-density channel significantly improves the transmission of the ignition pulse for fast ignition.

Collaborators

C. Ren

R. Yan

V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

T. L. Wang

W. B. Mori

J. Tonge

University of California, Los Angeles

Simulations were carried out at NERSC through a DOE INCITE grant.

Laser channeling in millimeter-scale plasmas is a highly nonlinear and dynamic process

- Full-scale 2-D slab-simulation parameters*
 - box size: 1 mm imes 0.25 mm grids number: 10460 imes 2614
 - particles number: 5.6 \times 10⁷ simulation time: 20 ps $n = 0.1 \sim 1.0 n_{cr}$
- The simulations show many nonlinear phenomena
 - plasma piling up
 - laser hosing/refraction leads to channel bending
 - channel bifurcation/self-correction
- Important 3-D effects must be studied

*G. Li et al., Phys. Rev. Lett. <u>100</u>, 125002 (2008).

UR 🔌

A low-density channel is established in 3-D PIC simulations

- 3-D PIC simulation parameters
 - box size: 90 imes 90 imes 90 μ m
 - total particles number: 3.0×10^9 simulation time: 2.8 ps
 - $-I = 10^{19} \,\mathrm{W/cm^2}, n = 0.5 \sim 0.6 \,n_{\mathrm{cr}}$
- grids number: 1728 imes 916 imes 916

UR 🔌

The pulse and the channel are nearly symmetric in the transverse directions

The 3-D pulse is nearly symmetric in the transverse directions.

64

48

32

16

16

32

48

 $y(\mu m)$ 3-D yz slicer

64

(m*m*) z

UR

-0.2

-0.4

-0.6

-0.8

-1.0

- The 3-D channel is nearly round.
- It is reasonable to assume cylindrical symmetry in 3-D.

A low-density channel is established faster in 3-D than in 2-D

- The channel in 3-D has a more regular shape.
- The average residual density in 3-D is smaller.

The stronger 3-D ponderomotive force allows the channel to form faster

• For the same laser ponderomotive force $F_p \sim a^2/w$, the channel is deeper in 3-D than in 2-D

$$\left(\frac{\partial^2}{\partial t^2} - c_s^2 \nabla_{\perp}^2\right) \frac{\delta n_i}{n_{i0}} = c^2 \frac{Zm_e}{m_i} \nabla_{\perp}^2 \left(1 + a^2/2\right)^{1/2}$$

- *F_p* is larger in 3-D than in 2-D due to self-focusing
 - $3-D: w^2a^2 = const$
 - 2-D: wa² = const
 - $F_{p3-D}/F_{p2-D} = w_0/w_f > 1$ (if $w_{f2-D} = w_{f3-D}$)

Relativistic *T*_e suppresses self-focusing and other nonlinear interactions

- PIC simulations show the residual electrons are quickly heated to relativistic T_e
- When T_e is relativistic, the quiver velocity v_z is reduced*

$$v_z = \frac{a/\gamma}{\left(1 + 5\,\rho_{th}^2\right)^{1/2}}$$

- The ponderomotive force is decreased by 14 \times times for p_{th} = 6, leading to the laser-plasma decoupling
 - w_f decreases by a factor of 2 in both 2-D and 3-D
- Decoupling at relativistic temperature increases the laser transmission

*K. C. Tzeng et al., Phys. Rev. Lett. 81, 104 (1998).

UR

Summary/Conclusions

A clean channel can be established by a high-intensity laser in the underdense plasma of fast-ignition targets

- Channel advancing in 3-D PIC simulations is faster than in 2-D.
- The difference of channel advancing in 2-D and 3-D is due to the difference in laser self-focusing and ponderomotive force.
- Electrons are heated to relativistic temperatures, which reduces laser-plasma coupling in the channel.
- A low-density channel significantly improves the transmission of the ignition pulse for fast ignition.