Optimization of Multiple-Picket, Direct-Drive Laser Pulse Shapes with Foam Shells

Foam 90 *µ*n 90 *µ*m 430 μm ⁄430 μm *d*[ln(*P*)]/*dr* 20 100 Mass coordinate (×10⁻⁴ g) 0.5 16 0.4 Power (TW) 12 0.3 8 0.2 4 0.1 10^{-1} 0.0 0 3 3 0 2 4 0 2 4 1 Time (ns) Time (ns)

50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008 Summary

180-mg/cm³ foam layers are used to study shock propagation in multiple-picket pulse shapes

• Targets have been developed that retain 9 atm of D_2 gas for nuclear diagnostics.

- Experimental areal density (ρR) data are higher than those predicted by 1-D hydrodynamic simulations.
- Absorption differences between experimental data and simulation results do not explain this ρR discrepancy.

V. N. Goncharov P. B. Radha J. A. Delettrez V. Yu. Glebov F. J. Marshall

University of Rochester Laboratory for Laser Energetics

> J. A. Frenje C. K. Li R. D. Petrasso F. H. Séguin

Plasma Science and Fusion Center Massachusetts Institute of Technology

Multiple-shock transit and catch-up through the thick foam shells is very similar to cryogenic shells

Ignition targets use precisely timed multiple shocks to approximate an isentropic compression

Variations on a double-picket pulse shape were used for the foam-shell implosions

- Reference Pulse Shape
- Increase second-picket intensity 30%
- Decrease second-picket intensity 30%

The reference pulse shape generates three shock waves that remain separated in time

Reducing the picket to 70% of its reference intensity allows the three shock waves to converge

A mount with a fill tube connected to a large reservoir ensures the target has D_2 gas during the implosion

- Gas cartridge target
 - foam target
 - fill tube-
 - small reservoir (large fill tube)
 - large reservoir
 - gas connector

OD 874 \pm 7 μ m CH shell 4.6 \pm 0.4 μ m CRF 0.18 g/cm³ 83 \pm 7 μ m D₂ 9.5 \pm 0.6 atm

Simulations underpredict the areal density when the intensity of the second picket is increased

Simulations are a better match to the data when the absorbed energy in the second picket is reduced

Both transport models overestimate the absorption fraction for the pulse shape's foot and drive

Reducing the drive-pulse energy lowers the areal density

UR

Absorption differences between experimental data and simulation results do not explain the ρR discrepancy.

Summary/Conclusions

180-mg/cm³ foam layers are used to study shock propagation in multiple-picket pulse shapes

• Targets have been developed that retain 9 atm of D_2 gas for nuclear diagnostics.

- Experimental areal density (ρR) data are higher those predicted by 1-D hydrodynamic simulations.
- Absorption differences between experimental data and simulation results do not explain this ρR discrepancy.

Both transport models predict a higher time-integrated absorption than what is measured

Trends seen in the experimental ρR data are not matched by 1-D simulations

Neither transport model is a good match to the experimental neutron yields

Simulations of the start of the neutron burn agree with the experimental data for the RX and DS pickets

