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Experiments indicate the feasibility of laser-driven flux 
compression in HED plasmas

E17352

•	 Magnetized	cylindrical	targets	were	imploded	on	OMEGA	to	compress	 
a pre-seeded magnetic flux to high values.

•	 An	~100-kG	seed	magnetic	field	was	generated	with	a	double	coil	driven	
by a portable capacitive discharge system (MIFEDS).

•	 Proton	deflectometry	along	with	data	interpretation	tools	was	developed	
and	used	to	detect	the	compressed	magnetic	fields.

•	 There	is	compelling	evidence	that	the	magnetic	field	is	compressed	 
to multi-megagauss values.

•	 Spherical	implosions	in	axial	fields	are	planned	to	study	the	heat	
transport	in	the	conduction	zone	in	the	presence	of	the	seed	field.
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A	megagauss	field	can	expand	the	ICF	gain	window	or	
alternatively, reduce the energy required for ignition 
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•	 An	igniting	targets’	gain	scales	inversely	with	implosion	velocity	yi,*
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•	 A	megagauss	magnetic	field	should	reduce	thermal	conduction	losses	
in the forming hot spot.

 ~ ~ ~ ~T T
T

B T
1/

/e e e
ce e

e e

e

5 2
2 2 1 2

"l x l
~ x

x
=

_ i

•	 Considering	the	NIF	1.5-MJ,	direct-drive	point	design,** 
ths á 30 g/cc, Ths á 7	keV	(before ignition), rhs á 50 nm.

Bhs ~ 10 MG Bhs ~ 100 MG

b ≈ 4 × 104 l^ ≈ 0.2 l|| 
for ~cexe á 1.2

b á 4 × 102 l^ á 0.01 l|| 
for ~cexe á 12

ta = 270 nm ta/ths > 5 ta = 27 nm
a-particles magnetically 
trapped: ta/ths ≈  0.5, 
~caxa ≈ 0.1

Bhsrhs
Bhsths

 * R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).
 ** P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).

FSC



The	seed	magnetic	field	is	generated	in	a	double-coil	
geometry optimized for OMEGA implosions
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The	field	in	the	compressed	core	is	probed	by	15-MeV	
protons from the implosion of a D3He-filled	target	
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•	 Selection	of	tracks	by	
diameter (energy) is 
used to expose the 
particles deflected  
in	the	amplified	field.

•	 A	powerful	method	 
that can help infer the 
core	density	and	field	
profiles	and	promote	
particles deflected by  
the	field	peak	above	 
the	background.

*See for example C.K.Li et al. (BI1.00005)
 and M. Manuel et al. (YP6.00011).
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Field	amplification	has	been	observed	in	all	the	
magnetized implosions probed by protons
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Density	and	field	profiles	from	LILAC-MHD  
(~60% of the initial flux retained    )

The particle transport code GEANT4 uses 
the	hydro	simulation	profiles	to	match	the	
experiment under the constraint of flux 
and mass conservation
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Experimental data at various energy bands 
(paths through the target)
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Strong	magnetic	field	(B > 30 MG) is present in the 
compressed	core	in	low-fill-pressure	shot	51069
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•	 The	sharp	field	peak	results	
in strong deflection.

•	 30-MG	average	core	field	 
is	the	lowest	value	that	can	
match this deflection.
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Null (no	field)	experiments	were	also	performed	 
showing	no	deflection	of	the	core-traversing	protons
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LILAC-MHD simulations (1-D) predict a 3 to 4× increase  
in the neutron yield of magnetized targets
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Spherical	implosions	in	an	axial	field	can	shed	light	on	
possible heat transport inhibition in the ablation region
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•	 Shots	with	and	without	an	
embedded	dipole	field	can	
be compared.

•	 A	significant	field-induced	
thermal-transport inhibition 
should manifest itself in an 
asymmetric drive.

•	 Shot-to-shot	variation	is	
expected to be under better 
control for spherical targets.

•	 Core	temperature,	magnetic	
field,	and	neutron	yields	will	
also be measured.

Spherical
target

MIFEDS
coil
MIFEDS
coil
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Summary/Conclusions
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Experiments indicate the feasibility of laser-driven flux 
compression in HED plasmas

•	 Magnetized	cylindrical	targets	were	imploded	on	OMEGA	to	compress	 
a pre-seeded magnetic flux to high values.

•	 An	~100-kG	seed	magnetic	field	was	generated	with	a	double	coil	driven	
by a portable capacitive discharge system (MIFEDS).

•	 Proton	deflectometry	along	with	data	interpretation	tools	was	developed	
and	used	to	detect	the	compressed	magnetic	fields.

•	 There	is	compelling	evidence	that	the	magnetic	field	is	compressed	 
to multi-megagauss values.

•	 Spherical	implosions	in	axial	fields	are	planned	to	study	the	heat	
transport	in	the	conduction	zone	in	the	presence	of	the	seed	field.



The hot-spot beta affects the implosion dynamics, 
setting	an	optimum	of	the	seed	field
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•	 The	maximum	compressed	field	on	OMEGA	is	limited	by	 
the driver energy to ~10,000 T (at ~12 T	seed	field).
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LILAC-MHD simulations show that 
the magnetic pressure in the 
hot spot affects peak compression.

There is a balance between B2/2n0 and 
the hot-spot pressure that sets the 
pressure profile (plotted for Bseed = 8 T).
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Shock	front
jump condition
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The	magnetic	field	is	first	trapped	in	the	shock-ionized	
gas	fill	and	then	compressed	by	the	imploding	shell
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•	 In	OMEGA	cylindrical	implosions,	Rem is high (>50) due to the high- 
implosion velocity (>107 cm/s) and plasma conductivity (v ~ 1018 s–1) 
in	the	ionized	gas	fill.
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