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Experiments indicate the feasibility of laser-driven flux 
compression in HED plasmas
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•	 Magnetized cylindrical targets were imploded on OMEGA to compress  
a pre-seeded magnetic flux to high values.

•	 An ~100-kG seed magnetic field was generated with a double coil driven 
by a portable capacitive discharge system (MIFEDS).

•	 Proton deflectometry along with data interpretation tools was developed 
and used to detect the compressed magnetic fields.

•	 There is compelling evidence that the magnetic field is compressed  
to multi-megagauss values.

•	 Spherical implosions in axial fields are planned to study the heat 
transport in the conduction zone in the presence of the seed field.
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A megagauss field can expand the ICF gain window or 
alternatively, reduce the energy required for ignition 
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•	 An igniting targets’ gain scales inversely with implosion velocity yi,*
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•	 A megagauss magnetic field should reduce thermal conduction losses 
in the forming hot spot.
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•	 Considering the NIF 1.5-MJ, direct-drive point design,** 
ths á 30 g/cc, Ths á 7 keV (before ignition), rhs á 50 nm.

Bhs ~ 10 MG Bhs ~ 100 MG

b ≈ 4 × 104 l^ ≈ 0.2 l|| 
for ~cexe á 1.2

b á 4 × 102 l^ á 0.01 l|| 
for ~cexe á 12

ta = 270 nm ta/ths > 5 ta = 27 nm
a-particles magnetically 
trapped: ta/ths ≈  0.5, 
~caxa ≈ 0.1

Bhsrhs
Bhsths

	*	R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).
	**	P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).
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The seed magnetic field is generated in a double-coil 
geometry optimized for OMEGA implosions
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The field in the compressed core is probed by 15-MeV 
protons from the implosion of a D3He-filled target 
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•	 Selection of tracks by 
diameter (energy) is 
used to expose the 
particles deflected  
in the amplified field.

•	 A powerful method  
that can help infer the 
core density and field 
profiles and promote 
particles deflected by  
the field peak above  
the background.

*See for example C.K.Li et al. (BI1.00005)
 and M. Manuel et al. (YP6.00011).
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Field amplification has been observed in all the 
magnetized implosions probed by protons
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Density and field profiles from LILAC-MHD  
(~60% of the initial flux retained    )

The particle transport code GEANT4 uses 
the hydro simulation profiles to match the 
experiment under the constraint of flux 
and mass conservation
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Experimental data at various energy bands 
(paths through the target)
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Strong magnetic field (B > 30 MG) is present in the 
compressed core in low-fill-pressure shot 51069
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•	 The sharp field peak results 
in strong deflection.

•	 30-MG average core field  
is the lowest value that can 
match this deflection.
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Null (no field) experiments were also performed  
showing no deflection of the core-traversing protons
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LILAC-MHD simulations (1-D) predict a 3 to 4× increase  
in the neutron yield of magnetized targets
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Spherical implosions in an axial field can shed light on 
possible heat transport inhibition in the ablation region
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•	 Shots with and without an 
embedded dipole field can 
be compared.

•	 A significant field-induced 
thermal-transport inhibition 
should manifest itself in an 
asymmetric drive.

•	 Shot-to-shot variation is 
expected to be under better 
control for spherical targets.

•	 Core temperature, magnetic 
field, and neutron yields will 
also be measured.

Spherical
target

MIFEDS
coil
MIFEDS
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Summary/Conclusions
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Experiments indicate the feasibility of laser-driven flux 
compression in HED plasmas

•	 Magnetized cylindrical targets were imploded on OMEGA to compress  
a pre-seeded magnetic flux to high values.

•	 An ~100-kG seed magnetic field was generated with a double coil driven 
by a portable capacitive discharge system (MIFEDS).

•	 Proton deflectometry along with data interpretation tools was developed 
and used to detect the compressed magnetic fields.

•	 There is compelling evidence that the magnetic field is compressed  
to multi-megagauss values.

•	 Spherical implosions in axial fields are planned to study the heat 
transport in the conduction zone in the presence of the seed field.



The hot-spot beta affects the implosion dynamics, 
setting an optimum of the seed field
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•	 The maximum compressed field on OMEGA is limited by  
the driver energy to ~10,000 T (at ~12 T seed field).
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LILAC-MHD simulations show that 
the magnetic pressure in the 
hot spot affects peak compression.

There is a balance between B2/2n0 and 
the hot-spot pressure that sets the 
pressure profile (plotted for Bseed = 8 T).

B2/2n0 = 0

P + B2/2n0

B2/2n0
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0
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Shock front
jump condition
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The magnetic field is first trapped in the shock-ionized 
gas fill and then compressed by the imploding shell
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•	 In OMEGA cylindrical implosions, Rem is high (>50) due to the high- 
implosion velocity (>107 cm/s) and plasma conductivity (v ~ 1018 s–1) 
in the ionized gas fill.

B B
R
R 1

max
min

Re

z 0
0

2 1 m

b

-

f

_

p

i

v
v

B

B
u
u

z

z
s i

s f
-
-

=-

+

FSC


