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Scattered-light simulations may be reconciled with 
experiments by cross-beam energy transfer out of  
the central portion of the beam profile

E17327

•	 Time-dependent scattered-laser-light spectra are modeled 
by a combination of hydrodynamic and ray-tracing codes

•	 Analysis of the spectra indicates that the red shift of the 
scattered-light fan tail is poorly modeled

		  –	 especially for scattered light originating from the 
central portion of the beam profile

•	 Modeled spectra with simulated cross-beam energy 
transfer out of the beam profile center produce a much 
better match to the experimental scattered-light spectra.

Summary
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Time-dependent scattered-light spectra  
are modeled for OMEGA implosions

E15989b 1V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).

Modeling Spectra

•	 LILAC: 1-D hydrodynamic code predicts 
time-dependent plasma profiles using 
Goncharov nonlocal electron- heat 
transport model1



Time-dependent scattered-light spectra  
are modeled for OMEGA implosions

E15990c

1V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
2T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids 24, 528 (1981).
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•	 SAGERAYS: Ray traces 351-nm-drive 
laser light through plasma and calculates 
spectral shift along each path2

xf 	= time of flight of light along ray
ne 	= plasma density
nc 	= plasma critical density
~0 = laser-light angular frequency

•	 LILAC: 1-D hydrodynamic code predicts 
time-dependent plasma profiles using 
Goncharov nonlocal electron- heat 
transport model1
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•	 SAGERAYS: Ray traces 351-nm-drive 
laser light through plasma and calculates 
spectral shift along each path2

xf 	= time of flight of light along ray
ne 	= plasma density
nc 	= plasma critical density
~0 = laser-light angular frequency

•	 MATLAB 3-D code calculates total 
spectrum collected by FABS from 
all 60 beams

Time-dependent scattered-light spectra  
are modeled for OMEGA implosions

E15991d

1V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006).
2T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids 24, 528 (1981).

Rays collected by FABS

•	 LILAC: 1-D hydrodynamic code predicts 
time-dependent plasma profiles using 
Goncharov nonlocal electron- heat 
transport model1



Modeled scattered-light spectra show a detailed 
structure with both blue- and red-shifted components

E16793a
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Modeled scattered-light spectra show a detailed 
structure with both blue- and red-shifted components
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E17329

Modeled spectra show all the basic structures of the 
experimental spectra but differ in some details
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experimental spectra but differ in some details
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20-nm plastic shell
1-ns square pulse
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Modeled spectra show all the basic structures of the 
experimental spectra but differ in some details
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20-nm plastic shell
1-ns square pulse
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The discrepancy between modeling and experiment  
is not simply an overprediction of absorption

E17330

•	 Global scaling of the pulse energy to match observed total absorption 
does not significantly improve the spectral-shift predictions

•	 The predicted bang times are typically within 50 ps of the experimental 
value, suggesting the overall drive is fairly well modeled

•	 The experimental lack of an intense red-most beam finger suggests 
that absorption may be underpredicted for this finger

•	 Altering the profile of the beam to shift energy out of the beam center 
may provide reconciliation with experiments.



EM-seeded SBS cross-beam power transfer might 
significantly alter the absorption profile

•	 Light entering the plasma can 
transfer energy to crossing light 
that is leaving the plasma via an 
ion acoustic wave.

•	 Laser-pulse energy from one 
part of the  beam profile may 
be transferred to another, 
“bypassing” the highest 
absorption region (near the 
turning point).
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Initial calculations support cross-beam energy transfer 
out of the beam profile center

E17331
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“Mock-up” simulation of energy transfer out of the beam 
center greatly reduces the discrepancy

E17332

Incorporating a self-consistent cross-beam power-transfer 
model into LILAC is necessary for complete simulations.
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Summary/Conclusions

Scattered-light simulations may be reconciled with 
experiments by reduced absorption in the central 
portion of the beam profile

•	 Time-dependent scattered-laser-light spectra are modeled 
by a combination of hydrodynamic and ray-tracing codes

•	 Analysis of the spectra indicates that the red shift of the 
scattered-light fan tail is poorly modeled

		  –	 especially for scattered light originating from the 
central portion of the beam profile

•	 Modeled spectra with simulated cross-beam energy 
transfer out of the beam profile center produce a much 
better match to the experimental scattered-light spectra.




