Precision Scattered Laser Light Spectroscopy in Direct-Drive Implosions

D. H. Edgell University of Rochester Laboratory for Laser Energetics 50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Scattered-light simulations may be reconciled with experiments by cross-beam energy transfer out of the central portion of the beam profile

- Time-dependent scattered-laser-light spectra are modeled by a combination of hydrodynamic and ray-tracing codes
- Analysis of the spectra indicates that the red shift of the scattered-light fan tail is poorly modeled
 - especially for scattered light originating from the central portion of the beam profile
- Modeled spectra with simulated cross-beam energy transfer out of the beam profile center produce a much better match to the experimental scattered-light spectra.

Collaborators

W. Seka

J. A. Delettrez

R. S. Craxton

V. N. Goncharov

I. V. Igumenshchev

J. F. Myatt

A.V. Maximov

R.W. Short

T. C. Sangster

R. E. Bahr

University of Rochester Laboratory for Laser Energetics Modeling Spectra

Time-dependent scattered-light spectra are modeled for OMEGA implosions

 LILAC: 1-D hydrodynamic code predicts time-dependent plasma profiles using Goncharov nonlocal electron- heat transport model¹

UR

Time-dependent scattered-light spectra are modeled for OMEGA implosions

- LILAC: 1-D hydrodynamic code predicts time-dependent plasma profiles using Goncharov nonlocal electron- heat transport model¹
- SAGERAYS: Ray traces 351-nm-drive laser light through plasma and calculates spectral shift along each path²

$$\Delta \omega = -\omega_0 \frac{\partial \tau_f}{\partial t} = +\frac{\omega_0}{2c} \int \left(1 - \frac{n_e}{n_c}\right)^{-1/2} \frac{\partial}{\partial t} \left(\frac{n_e}{n_c}\right) ds$$

- τ_f = time of flight of light along ray
- $n_{\rm e}$ = plasma density
- $n_{\rm c}$ = plasma critical density
- ω_0 = laser-light angular frequency

UR

¹V. N. Goncharov *et al.*, Phys. Plasmas <u>13</u>, 012702 (2006).

²T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids <u>24</u>, 528 (1981).

Time-dependent scattered-light spectra are modeled for OMEGA implosions

- LILAC: 1-D hydrodynamic code predicts time-dependent plasma profiles using Goncharov nonlocal electron- heat transport model¹
- SAGERAYS: Ray traces 351-nm-drive laser light through plasma and calculates spectral shift along each path²

$$\Delta \omega = -\omega_0 \frac{\partial \tau_f}{\partial t} = +\frac{\omega_0}{2c} \int \left(1 - \frac{n_e}{n_c}\right)^{-1/2} \frac{\partial}{\partial t} \left(\frac{n_e}{n_c}\right) ds$$

- τ_f = time of flight of light along ray
- $n_{\rm e}$ = plasma density
- $n_{\rm C}$ = plasma critical density
- ω_0 = laser-light angular frequency
- MATLAB 3-D code calculates total spectrum collected by FABS from all 60 beams

¹V. N. Goncharov *et al.*, Phys. Plasmas <u>13</u>, 012702 (2006).

²T. Dewandre, J. R. Albritton, and E. A. Williams, Phys. Fluids <u>24</u>, 528 (1981).

Modeled scattered-light spectra show a detailed structure with both blue- and red-shifted components

Modeled scattered-light spectra show a detailed structure with both blue- and red-shifted components

20-μm plastic shell 1-ns square pulse

351.4

351.2

351.0

350.8

350.6

0.0

20

15

10

5

0

0.0

0.2

LILAC

Time (ns)

0.4 0.6 0.8 1.0

1.2

Power (TW)

Wavelength (nm)

The discrepancy between modeling and experiment is not simply an overprediction of absorption

Global scaling of the pulse energy to match observed total absorption
does not significantly improve the spectral-shift predictions

UR 🔬

- The predicted bang times are typically within 50 ps of the experimental value, suggesting the overall drive is fairly well modeled
- The experimental lack of an intense red-most beam finger suggests that absorption may be underpredicted for this finger
- Altering the *profile* of the beam to shift energy out of the beam center may provide reconciliation with experiments.

EM-seeded SBS cross-beam power transfer might significantly alter the absorption profile

- Light entering the plasma can transfer energy to crossing light that is leaving the plasma via an ion acoustic wave.
- Laser-pulse energy from one part of the beam profile may be transferred to another, "bypassing" the highest absorption region (near the turning point).

Initial calculations support cross-beam energy transfer out of the beam profile center

"Mock-up" simulation of energy transfer out of the beam center greatly reduces the discrepancy

LE

1.2

Incorporating a self-consistent cross-beam power-transfer model into LILAC is necessary for complete simulations.

Scattered-light simulations may be reconciled with experiments by reduced absorption in the central portion of the beam profile

- Time-dependent scattered-laser-light spectra are modeled by a combination of hydrodynamic and ray-tracing codes
- Analysis of the spectra indicates that the red shift of the scattered-light fan tail is poorly modeled
 - especially for scattered light originating from the central portion of the beam profile
- Modeled spectra with simulated cross-beam energy transfer out of the beam profile center produce a much better match to the experimental scattered-light spectra.