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The fast electrons from the two-plasmon-decay instability 
have little effect on two-picket cryogenic implosions

TC8253

•	 Relativistic	fast-electron	transport	is	modeled	in	LILAC  
with a radial straight-line model.

•	 The	characteristics	of	the	electron	source	were	determined	
from warm CH shell implosions.

•	 A	fractional	energy	of	~2% absorbed into fast electrons was 
determined to match the warm CH shells’ areal densities.

•	 Simulations	of	cryogenic	targets	resulted	in	a	different	
fractional energy between continuous and two-picket pulses  
to match the measured areal densities.

Summary
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The fast electrons are transported  
with a straight-line model

TC8114c

•	 Fast-electron	transport	modeling	
depends on the source angular 
distribution and energy.

•	 Experimental	results	with	planar	
targets suggest that electrons  
are produced nearly normal to  
the target surface.1

•	 The	electrons	are	created	at	 
the Nc/4 surface and travel in  
the radial direction.

1J. F. Myatt (NO4.00013).
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The fast-electron source parameters are normalized  
to the hard x-ray (HXR) emission from warm CH targets

TC8254

•	 The	energy	source	is	taken	to	scale	as

•	 Ffe, the energy fraction taken from each ray in the laser  
ray trace, is a free parameter.

•	 h = I14Lnm/233 Tc (kev) is the threshold parameter1 evaluated  
at the Nc/4 surface.

•	 S(h) is a source function determined from experiment results.

1A. Simon et al., Phys. Fluids 26, 3107 (1983).
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The source function was chosen to match the integrated 
HXR emission from warm CH targets over all intensities

TC8255 

*B. Yaakobi et al., Phys. Plasmas 12, 062703 (2005)  
and private communication.

32 pC/mJ used to convert simulation emission*
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A free parameter Ffe value ~2% fits the measured areal 
densities and the HXR emission for warm CH implosions 
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Thick CD shell cryo targets implosions were carried out 
with continuous and multipicket pulses 

TC8256
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For the continuous pulse a value of 2.5% for Ffe gives good 
agreement for both tR and HXR emission in cryo implosions 

TC8352

•	 The	tR is affected by shock timing1 and sampling2.
•	 The	measured	HXR	emission	is	a	factor	of	two	to	three 

too high due to x rays produced outside the target.
1V. N. Goncharov (TO5.0006).
2P. B. Radha (NO5.0003).
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For the two-picket pulse, Ffe = 0.5% reproduces the  
insensitivity of the tR to the two-plasmon decay instability

TC8391

•	 The	tR is affected by shock timing1 and sampling2.
•	 The	measured	HXR	emission	is	a	factor	of	two	to	three 

too high due to x rays produced outside the target.
1V. N. Goncharov (TO5.0006).
2P. B. Radha (NO5.0003).
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Summary/Conclusions

The fast electrons from the two-plasmon-decay instability 
have little effect on two-picket cryogenic implosions

•	 Relativistic	fast-electron	transport	is	modeled	in	LILAC  
with a radial straight-line model.

•	 The	characteristics	of	the	electron	source	were	determined	
from warm CH shell implosions.

•	 A	fractional	energy	of	~2% absorbed into fast electrons was 
determined to match the warm CH shells’ areal densities.

•	 Simulations	of	cryogenic	targets	resulted	in	a	different	
fractional energy between continuous and two-picket pulses  
to match the measured areal densities.


