

Summary

Polar-drive designs meet the neutron diagnostic development requirement for the NIF

- High neutron yields are produced from room-temperature targets
- Uniform drive is possible using existing NIF hardware
 - defocus the beams
 - repoint the beams
 - spread the beams within a quad
- The designs are insensitive to the phase-plate details but sensitive to the ablator material
- Yields around 10¹⁶ are expected for 1-MJ laser energy

- SAGE is used to identify uniform irradiation conditions
- *LILAC* is used to optimize the 1-D design
 - from 350 kJ to 1.5 MJ
- DRACO is used for full 2-D simulations
 - initially focus on 350 kJ

The polar-drive designs use only readily available capabilities on the NIF

The designs use thin-shell targets irradiated with short laser pulses

For higher energy *E*, scale radius and time as $E^{1/3}$.

The shell implodes with a high degree of uniformity

The original and Rev. 1 inner-cone designs are significantly different

Substituting the Rev. 1 or Rev. 2 phase plates in the original design makes little difference to uniformity

With the beam pointings optimized for SiO_2 , a CH target with equivalent mass is underdriven at the equator

The beam pointings can be adjusted to be optimum for CH

UR

The anticipated yields are consistent with OMEGA results and a very simple scaling model

UR 🔌

LL

The 2-D DRACO simulation shows a fairly uniform implosion but with a weaker drive at the equator

At peak neutron production the shell is nonuniform but there is a region of ~10-keV ion temperature

Polar-drive designs meet the neutron diagnostic development requirement for the NIF

- High neutron yields are produced from room-temperature targets
- Uniform drive is possible using existing NIF hardware
 - defocus the beams
 - repoint the beams
 - spread the beams within a quad
- The designs are insensitive to the phase-plate details but sensitive to the ablator material
- Yields around 10¹⁶ are expected for 1-MJ laser energy

Focal distributions are calculated using a simple geometrical-optics model

More-spatially broadened target-plane profiles can be obtained using split-quad focusing*

No phase plate, Phase plate, defocused best focus 600 µm \mathbf{O} $250 \mu m$ 1800 *µ*m

The 350-kJ design is diagnosed at 2.8 ns, just before peak neutron production

At 2.8 ns the center-of-mass radius is 600±6.5 μm and its velocity is 6 \times 10^7 cm/s ±1.7%

Outer cone

Profile #	(a, b) <i>µ</i> m	
1	(593, 343)	Original*
5	(593, 343)	Rev. 1 (300 eV)*
7	(697, 403)	Rev. 2 (285 eV)

Inner cone

Profile #	(a, b) <i>µ</i> m	
3	(739, 636)	Original
6	(824, 590)	Rev. 1 (300 eV)
8	(968, 693)	Rev. 2 (285 eV)