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OMEGA experiments have demonstrated  
the technique for timing shock waves on the NIF

E17297

•	 Ignition targets use a precisely timed sequence of shocks  
to condition the capsule.

•	 These will be timed to ±50 ps using optical diagnostics  
in surrogate targets.

•	 Various issues associated with this technique were studied  
and resolved with OMEGA experiments.

Summary

Cryogenic hohlraum and direct-drive target experiments  
show this technique meets NIF requirements.



The success of these experiments is the result  
of collaboration of four laboratories
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Ignition targets use precisely timed multiple shocks  
to approximate an isentropic compression

E17298
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Ignition targets use precisely timed multiple shocks  
to approximate an isentropic compression
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Ignition targets use precisely timed multiple shocks  
to approximate an isentropic compression
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Ignition targets use precisely timed multiple shocks  
to approximate an isentropic compression
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Tuning experiments will adjust the drive to produce  
optimal timing: a tight sequence of shock arrivals

E14087b

•	 First three shocks ±50 ps
•	 Fourth shock ±100 ps

Approach
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Meet these requirements with separate target types and campaigns.

Requirements 

 shocks 1 to 3 at Trad = 165 eV

 at Trad = 250 eV 

Tuning experiments will adjust the drive to produce  
optimal timing: a tight sequence of shock arrivals
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Requirements



Shock-timing measurements in direct- and indirect-drive 
targets use re-entrant cones

E15221c
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Hard x rays from laser spots
can blank diagnostic window

Diagnostic window

VISAR
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Various issues were resolved to demonstrate  
the shock-timing technique for NIF

E15108d

Issues

• 	Surrogacy to ignition targets

• 	 Ionization blanking of the window

• 	Secondary hohlraum 

• 	Effect of D2 column

• 	Convergence effects

OMEGA Experiments



The velocity interferometer system for any reflector 
(VISAR) detects Doppler shifts to measure velocity
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Shock velocities are readily measured in transparent  
targets but “blanking” can be a problem

E15223c *Velocity Interferometer System for Any Reflector
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Halfraum experiments were used to select  
window material and optimize target design

E14173b

Quartz “anvil”

Liquid D2

VISARVISAR

VISAR

M-band

L
at

er
al

 p
o

si
ti

o
n

 (
n

m
)

Time (ns)

Quartz
anvil

50

200

–200

0

150

100

50

0

H
o

h
lr

au
m

 t
em

p
 (

eV
)

Developments

  –  high band gap
  –  optical quality
  – strong/resilient



Open line-of-sight targets mimic the effect  
of NIF laser spots in keyhole targets
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Stacked-pulse experiments show that neither instantaneous 
nor integrated flux is expected to be problematic

E15116c
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Warm hohlraum experiments with NIF-sized re-entrant
cones demonstrate success at Trad = 180 eV

E16213b
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Liquid D2 tuning experiments are good surrogates  
for ignition designs

E17299

D2 to DT corrections are known and minor.
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VISAR measurements were made in targets  
filled with liquid deuterium and driven at 135 eV

E16219b

VISAR and self-emission data 
show identical features

This meets NIF shock timing requirements.

VISAR-2 shot 48881
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OMEGA hohlraums produce “hard” x-ray fluxes that
exceed those expected on the NIF

E16229a

OMEGA-scale hohlraums have higher laser-spot intensities than the NIF.
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Windowless targets will make it possible to time  
the fourth rise (compression wave) at >220 eV
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Various issues were investigated to demonstrate  
the shock-timing technique

E15108e

Issues 

• 	Surrogacy to ignition targets ✔

• 	 Ionization blanking of window ✔

• 	Secondary hohlraum ✔ 

• 	Effect of D2 column ✔

• 	Convergence effects
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The timing of multiple convergent shocks is studied 
using directly driven spheres with re-entrant cones

E16636a

•	 Cannot produce multiple shocks and the requisite 
radiation temperature in hohlraums on OMEGA
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Three spherically convergent shocks were observed  
in directly-driven cryogenic spherical targets
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The temporal features in self-emission data  
confirm shock-timing observed in VISAR data
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OMEGA experiments have demonstrated  
the technique for timing shock waves on the NIF

E17297

Summary/Conclusions

•	 Ignition targets use a precisely timed sequence of shocks  
to condition the capsule.

•	 These will be timed to ±50 ps using optical diagnostics  
in surrogate targets.

•	 Various issues associated with this technique were studied  
and resolved with OMEGA experiments.

Cryogenic hohlraum and direct-drive target experiments  
show this technique meets NIF requirements.


