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Precision equation-of-state (EOS) measurements  
are obtained using quartz as a standard

E17322

•	 The impedance-matching (IM) technique has been used for decades  
to obtain EOS measurements, mainly using opaque standards.

•	 Both random and systematic errors, inherent in IM, must be addressed.

•	 Transparent standards (quartz) allow one to measure the shock velocity 
(Us) within the standard, reducing random errors.

•	 This high-precision technique applied to diamond EOS resolved  
an ambiguity in existing data.

Summary
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Laser-driven shocks are used to study materials  
at high pressure

E17067a

The measurement of two variables is needed  
to close these equations; e.g., Us = F(Up).

Rankine–Hugoniot equations
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The particle velocity and pressure are conserved  
across a contact interface

E17323
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Need to minimize experimental error and address 
systematic errors for precision EOS measurements

E13920b

•	 Measurement accuracy 
depends on knowledge  
of standard.

•	 Most IM studies quote  
only random errors.

•	 Cannot propagate 
systematic errors  
using theoretical EOS.
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At high pressures inconsistencies exist between  
EOS models and data for aluminum

E17070a

Systematic Errors
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Higher precision is achieved using  
a transparent standard

E17324
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Quartz validity as a standard is established through ample
study of its EOS and agreement with previous results

E17325
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Discrepancies in diamond EOS were resolved  
with high-precision data

E17326 D. G. Hicks et al., Phys. Rev. B 78, 174102 (2008).
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Discrepancies in diamond EOS were resolved  
with high-precision data 

E17326 D. G. Hicks et al., Phys. Rev. B 78, 174102 (2008).
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•	 The impedance-matching (IM) technique has been used for decades  
to obtain EOS measurements, mainly using opaque standards.

•	 Both random and systematic errors, inherent in IM, must be addressed.

•	 Transparent standards (quartz) allow one to measure the shock velocity 
(Us) within the standard, reducing random errors.

•	 This high-precision technique applied to diamond EOS resolved  
an ambiguity in existing data.

•	 This technique will be applied to: CH, LiF, Al2O3, and GGG.

Summary/Conclusions

Precision equation-of-state (EOS) measurements  
are obtained using quartz as a standard


