

K. S. Anderson University of Rochester Laboratory for Laser Energetics Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics 50th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17–21 November 2008

Summary

FSC

The performance of cone-in-shell fuel-assembly implosions is sensitive to cone geometry

- The temporal difference between cone-tip shock-breakout time (t_{sb}) and the time of 90% peak ρR (t_{90}) provides a good figure-of-merit for system performance ($\Delta t = t_{90} t_{sb}$)
 - insensitive to cone opening angle $(\pm 20 \text{ ps})$
 - sensitive to cone-tip offset (±50 ps)
 - very sensitive to cone-tip thickness (±100 ps)
- Optimal cone geometry will be determined by integrated DRACO-LSP* simulations

UR 🔌

Collaborators

A. A. Solodov,* R. Betti,* P. W. McKenty, and W. Theobald*

University of Rochester Laboratory for Laser Energetics

*Fusion Science Center for Extreme States of Matter and Fast-Ignition Physics

Multiparameter studies characterized the performance of **OMEGA CD** implosions for various cone-tip geometries UR 🔌 FSC

- **Parameters**
 - cone angle (12° to 35° half angle)
 - cone-tip offset from target center (40 to 70 μ m)
 - cone-tip thickness (5 to 25 μ m)

LLE

Radiograph of target

The temporal difference (Δt) between the shock breakout on the inside of the cone tip (t_{sb}) and the time of 90% peak $\rho R (t_{90})$ provides a good figure-of-merit for system performance $(\Delta t = t_{90} - t_{sb})$

Studies examine warm mass-equivalent targets emulating ignition-scaled OMEGA cryogenic cone-in-shell capsules

Adiabat, $\alpha = 1.2$

The shock-breakout time inside the cone tip has been measured experimentally

Target performance is evaluated by measuring the delay between the shock-breakout time in the cone tip and the time of 90% of peak ρ R

TC8381

Integrated DRACO-LSP simulations* indicate significant coupling of hot-electron energy to the fuel assembly

55% of hot-electron energy couples to fuel assembly at density greater than 80 g/cc.

*A. A. Solodov (YI1.00002).

FSC

Performance of cone-in-shell fuel-assembly implosions is sensitive to cone geometry

- The temporal difference between cone-tip shock-breakout time (t_{sb}) and the time of 90% peak $\rho R (t_{90})$ provides a good figure-of-merit for system performance $(\Delta t = t_{90} - t_{sb})$
 - insensitive to cone opening angle $(\pm 20 \text{ ps})$
 - sensitive to cone-tip offset (±50 ps)
 - very sensitive to cone-tip thickness (±100 ps)
- Optimal cone geometry will be determined by integrated DRACO-LSP* simulations

UR 🔌

- Optimization of beam configuration with 3-D ray trace (in progress)
- Optimization of yield with integrated fast-electron transport on integrated *LSP-DRACO* simulations
- Cryogenic and ignition design studies

Target performance is highly dependent on the cone-tip thickness

FSC LLE ρR_{sb} = areal density at time of shock breakout in cone tip ρR_{max} = maximum areal density $ho R_{sb} /
ho R_{peak}$ 90% 25 Cone-tip thickness (μ m) 20 15 10 30% 40 ⊿ 5 35 50 60% 25 30 Cone-tip offset (µm) 20 15 70 10 Cone angle (°)