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Summary

The first experimental results of the shock-ignition  
concept show significant improvement in performance

•	 Direct-drive	shock	ignition	promises	~3 times lower driver  
energy for hydro-equivalent high-gain targets than the 
conventional ICF concept.

•	 Systematic	studies	of	low-adiabat	(a ≈ 1.5), warm-plastic-shell  
implosions were performed on OMEGA with short-picket and  
high-intensity spike pulses. 

•	 The	spike	shock-generated	CH-shell	implosion	showed	a	factor	 
of ~4 enhanced fusion-product yields and higher GtRH ~ 0.2 g/cm2 
indicating a higher compression and better stability.

 
•	 Initial	shock-ignition	experiments	with	cryogenic	D2 and  

DT targets were performed showing ~1-D–like fuel assembly  
and up to 12% yield-over-clean.
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Fast and shock ignition can trigger ignition
in massive (slow) targets leading to high gains
FSC
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Isobaric fuel
assembly 
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The energy required for isobaric ignition
depends on implosion velocity and adiabat
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*	M.	C.	Herrmann,	M.	Tabak,	and	J.	D.	Lindl,		
 Phys. Plasmas 8, 2296 (2001).
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Laser-energy scaling
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The ignition condition is more favorable for a 
non-isobaric fuel assembly with a peaked pressure*
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*R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).



A non-isobaric fuel assembly can be produced by 
shocking the target just before peak compression
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R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007).
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A shaped laser pulse with high intensity spike  
launches a strong shock wave for ignition
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The ignitor shock wave significantly increases its strength 
as it propagates through the converging shell.

L. J. Perkins et al., (JO3.00014)
A. J. Schmitt et al., (PO6.00015)
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EL = 350 kJ, Vi = 2.4 × 107 cm/s, a = 1, mL = 0.35 nm

1-D marginal shock ignition requires thick shells,  
low adiabats, and ~350 kJ of laser energy*
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*R. Betti et al., IFSA proceedings (2007).



Shock-ignition pulse shapes lead to higher compression 
and more favorable ignition conditions

TC7868b
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A hydrodynamic-equivalent conventional hot-spot isobaric 
target requires ~1.2 MJ to achieve marginal ignition
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Hot	electrons	of	moderate	energies	produced	during
the shock spike can be beneficial to shock ignition

TC7870a

Hot	e– with Maxwellian Thot = 150 keV, Ehot = 17% of spike 
energy, treated using a multigroup diffusion model*

FSC

*J. Delettrez and E. B. Goldman, LLE, Univ. of Rochester, Rochester, NY, LLE Report No. 36 (1976).
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Three major shock-ignition issues are addressed  
in OMEGA laser experiments
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•	 It	is	studied	how	the	impulsive	acceleration	created	by	 
the ignition shock wave affects the fuel assembly.

•	 Varying	the	timing	of	the	peaks	in	the	laser	pulse	shape	 
is used to study the timing of the shock waves and to 
optimize the implosion. 

•	 Plastic-shell	implosions	were	used	to	study	how	fuel–shell	
mixing affects the yield performance for shock-ignition  
pulse shapes.

•	 Only	shocks	with	moderate	strength	can	be	launched	 
at the end of the pulse on OMEGA.

FSC



CH	shells	have	been	imploded	on	OMEGA	to	test
the performance of shock-ignition pulse shapes 
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The neutron yield increases considerably when  
a shock is launched at the end of the pulse. 
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With the high-intensity spike pulse there  
is a shock wave driven into the capsule

E16313

1-D LILAC hydrodynamic simulation for shot 46078 (25-atm D2) shows  
the formation and evolution of the shock wave launched by the late spike.
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No significant effect of SSD smoothing is observed  
in 40-nm shell, relaxation-picket, low-adiabat implosions

E16129

•	 With	a	high	hot-spot	convergence-ratio	the	fuel–shell	mixing	 
strongly quenches the fusion reactions.

FSC
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The correct timing of the shock waves is crucial  
for an optimized performance of the implosion
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The implosion was optimized with respect to the timing 
of the picket pulse with fixed spike timing
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The spike timing has a significant effect  
on the measured neutron yield
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The high yield-over-clean at high convergence ratio 
shows better stability with shock-ignition pulse shape
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The measured to 
calculated neutron- 
yield ratios are close 
to 10% for a hot-spot 
convergence ratio of 30.
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Downshifted secondary proton spectra  
measure* GtRH = 0.2 g/cm2 and (tR)max > 0.3 g/cm2
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*F.	H.	Séguin	et al., Rev. Sci. Instrum. 74, 975 (2003).
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Higher	GtRH exceeding = 0.2 g/cm2 where measured  
in implosions with late spike
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The shock-ignition pulse-shape implosions show an improved 
performance with respect to compression and neutron yields.
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The fuel assembly is close to the one-dimensional 
predictions with the code LILAC

E16137

FSC

P. B. Radha et al., Bull. Am. Phys. Soc. 51, 106 (2006).
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Initial experiments of the shock-ignition concept  
were performed with cryogenic D2 and DT targets
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•	 The	first	few	shock-ignition	cryo-implosions	on	OMEGA	were	
among the best performing (in terms of YOC and tR) but did  
not yet exceed the performance of standard pulse shapes.

•	 Pulse	shape	with	SSD	is	not	optimal	(spike rise time).
•	 More	cryo	shots	are	coming	up	in	the	future.

•	 The	D2 implosion measured GtRH = 0.18±0.05 g/cm2 achieving 90%  
of the 1-D prediction (0.20 g/cm2).

•	 The	neutron	YOC’s	were	5%	and	12%	for	the	D2 and DT implosions.

•	 The	simulations	show	that	no	shock	was	produced	by	the	spike	pulse.
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Summary/Conclusions

The first experimental results of the shock-ignition  
concept show significant improvement in performance

•	 Direct-drive	shock	ignition	promises	~3 times lower driver  
energy for hydro-equivalent high-gain targets than the 
conventional ICF concept.

•	 Systematic	studies	of	low-adiabat	(a ≈ 1.5), warm-plastic-shell  
implosions were performed on OMEGA with short-picket and  
high-intensity spike pulses. 

•	 The	spike	shock-generated	CH-shell	implosion	showed	a	factor	 
of ~4 enhanced fusion-product yields and higher GtRH ~ 0.2 g/cm2 
indicating a higher compression and better stability.

 
•	 Initial	shock-ignition	experiments	with	cryogenic	D2 and  

DT targets were performed showing ~1-D–like fuel assembly  
and up to 12% yield-over-clean.



The spike pulse provides a higher compression
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25-atm D2, EL = 17 and 19 kJ

Measurement 1-D simulation
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