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Features of the laboratory jets are consistent 
with an adiabatic astrophysical jet model
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•	 As predicted by an adiabatic astrophysical model,* experimental bow-
shock morphology is constant in time and independent of input energy.

•	 Dimensionless scaling parameters place OMEGA jets in the stellar jet 
regime.

•	 Distinctions between double-pulsed jets and single-pulsed jets have  
been observed for the first time.

Summary

*E. C. Ostriker et al., Astrophys. J. 557, 443 (2001).



Experiments detect features not
routinely observed in astrophysical jets
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•	 Experimental jets are imaged with multiple wavelengths
	 that can detect both the jet and ambient shocks.

•	 OMEGA jets are viewed at the source; Astrophysical jet
	 sources are obscured.

Motivation
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An OMEGA jet is formed by releasing material 
off a mid-Z (Al or Ti) plug embedded in a 
high-Z tungsten washer
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The use of Al and Ti plugs
allows jet and ambient
features to be studied



Dimensionless parameters place
OMEGA jets in the stellar regime
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Dimensionless 
Parameters

OMEGA 
Experiments

Young Stellar 
Objects

Planetary 
Nebulae

Density contrast:
Jet/ambient density 5 to 20 1 to 20 ~1000

Mach number:
Ratio of Vs to Ca

2 to 4 10 to 40 40 to 100

Reynolds number: 
Inertial/viscous drag ~1000 ~1013 ~1012

•	 Density contrast > 1 places jets in the overdense regime.

•	 Mach number > 1 places jets in the supersonic regime.

•	 Reynolds number >> 1 places jets in the unstable regime.



Jets are driven radially by two distinct methods
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Radiative Adiabatic

Bow shock

Shroud

Jet beam

Contact
discontinuity

Ambient medium

•	 The cocoon is able to cool, so 
it becomes thin and dense.

•	 Jet is driven radially by the 
ram pressure of the cocoon.

•	 Hot cocoon, unable to radiate, 
is more diffuse.

•	 Jet is driven radially by the 
thermal pressure of the cocoon.



An adiabatic jet model* predicts a bow-shock morphology
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•	 The beam-cap energetics in this model 
account for the cocoon energy loss 
and, therefore, determine the ambient 
and jet densities, radii, and speeds.

•	 Experimental jet density, 
speed, and radius are 
determined from the 
radiographs.

*E. C. Ostriker et al., Astrophys. J. 557, 443 (2001).
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An adiabatic astrophysical model is fit 
to experimental bow-shock profiles
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Both radial and axial 
bow-shock-profile 
coordinates were 
normalized to jet length.

As predicted by the adiabatic astrophysical model, experimental bow-
shock shape is constant in time and independent of input energy.
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Axial coordinates normalized to lengths

Bow-shock profiles color-coded by shell

Half-E 75 ns
Full-E 75 ns
Full-E 100 ns
Full-E 125 ns

x = –(Vs/bCa) [(Rs/Rb)3 – 3(Rs/Rb) + 2] Rb



Single-pulsed jets are created by seven simultaneous 
laser beams
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•	 The density along the jet beam shows a dense beam cap.

•	 The cocoon has a large radius.

•	 Cocoon density is nearly the same as the jet beam density.
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Double-pulsed jets are created by three  
laser beams, followed 10 ns later by  
a second pulse of four laser beams

E16234

•	 The cocoon density is roughly the same as the shroud density  
and much less than the beam density.

•	 The cocoon radius is small compared with single-pulsed jets.

•	 Double-pulsed jets exhibit a more-uniform density along the jet beam 
rather than a secondary working surface.

The differences in single- and double-pulsed jets 
are apparent within ten pulse-separation periods.
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Summary/Conclusions

Features of the laboratory jets are consistent 
with an adiabatic astrophysical jet model

•	 As predicted by an adiabatic astrophysical model,* experimental bow-
shock morphology is constant in time and independent of input energy.

•	 Dimensionless scaling parameters place OMEGA jets in the stellar jet 
regime.

•	 Distinctions between double-pulsed jets and single-pulsed jets have  
been observed for the first time.

*E. C. Ostriker et al., Astrophys. J. 557, 443 (2001).


