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Features of the laboratory jets are consistent 
with an adiabatic astrophysical jet model
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•	 As	predicted	by	an	adiabatic	astrophysical	model,*	experimental	bow-
shock morphology is constant in time and independent of input energy.

•	 Dimensionless	scaling	parameters	place	OMEGA	jets	in	the	stellar	jet	
regime.

•	 Distinctions	between	double-pulsed	jets	and	single-pulsed	jets	have	 
been observed for the first time.

Summary

*E.	C.	Ostriker	et al., Astrophys. J. 557, 443 (2001).



Experiments detect features not
routinely observed in astrophysical jets
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•	 Experimental	jets	are	imaged	with	multiple	wavelengths
 that can detect both the jet and ambient shocks.

•	 OMEGA	jets	are	viewed	at	the	source;	Astrophysical	jet
 sources are obscured.

Motivation
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An OMEGA jet is formed by releasing material 
off a mid-Z (Al or Ti) plug embedded in a 
high-Z tungsten washer
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allows jet and ambient
features to be studied



Dimensionless parameters place
OMEGA jets in the stellar regime

E15245a

Dimensionless 
Parameters

OMEGA 
Experiments

Young Stellar 
Objects

Planetary 
Nebulae

Density contrast:
Jet/ambient density 5 to 20 1 to 20 ~1000

Mach number:
Ratio of Vs to Ca

2 to 4 10 to 40 40 to 100

Reynolds number: 
Inertial/viscous drag ~1000 ~1013 ~1012

•	 Density	contrast	> 1 places jets in the overdense regime.

•	 Mach	number	> 1 places jets in the supersonic regime.

•	 Reynolds	number	>> 1 places jets in the unstable regime.



Jets are driven radially by two distinct methods
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Radiative Adiabatic

Bow shock

Shroud

Jet beam

Contact
discontinuity

Ambient medium

•	 The cocoon is able to cool, so 
it becomes thin and dense.

•	 Jet	is	driven	radially	by	the	
ram pressure of the cocoon.

•	 Hot cocoon, unable to radiate, 
is more diffuse.

•	 Jet	is	driven	radially	by	the	
thermal pressure of the cocoon.



An adiabatic jet model* predicts a bow-shock morphology
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•	 The	beam-cap	energetics	in	this	model	
account for the cocoon energy loss 
and, therefore, determine the ambient 
and jet densities, radii, and speeds.

•	 Experimental	jet	density,	
speed, and radius are 
determined from the 
radiographs.

*E.	C.	Ostriker	et al., Astrophys. J. 557, 443 (2001).
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An adiabatic astrophysical model is fit 
to experimental bow-shock profiles
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Both radial and axial 
bow-shock-profile 
coordinates were 
normalized to jet length.

As predicted by the adiabatic astrophysical model, experimental bow-
shock shape is constant in time and independent of input energy.
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Axial coordinates normalized to lengths

Bow-shock profiles color-coded by shell

Half-E 75 ns
Full-E 75 ns
Full-E 100 ns
Full-E 125 ns

x = –(Vs/bCa) [(Rs/Rb)3 – 3(Rs/Rb) + 2] Rb



Single-pulsed jets are created by seven simultaneous 
laser beams
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•	 The	density	along	the	jet	beam	shows	a	dense	beam	cap.

•	 The	cocoon	has	a	large	radius.

•	 Cocoon	density	is	nearly	the	same	as	the	jet	beam	density.

125 ns100 ns

BeamBeam

CocoonCocoon

ShroudShroud

BeamBeam

CocoonCocoon

ShroudShroud

t
R



100 ns

t
R

125 ns

BeamBeam
CocoonCocoon
ShroudShroud

BeamBeam
CocoonCocoon
ShroudShroud

Double-pulsed jets are created by three  
laser beams, followed 10 ns later by  
a second pulse of four laser beams
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•	 The	cocoon	density	is	roughly	the	same	as	the	shroud	density	 
and much less than the beam density.

•	 The	cocoon	radius	is	small	compared	with	single-pulsed	jets.

•	 Double-pulsed	jets	exhibit	a	more-uniform	density	along	the	jet	beam	
rather than a secondary working surface.

The differences in single- and double-pulsed jets 
are apparent within ten pulse-separation periods.
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Summary/Conclusions

Features of the laboratory jets are consistent 
with an adiabatic astrophysical jet model

•	 As	predicted	by	an	adiabatic	astrophysical	model,*	experimental	bow-
shock morphology is constant in time and independent of input energy.

•	 Dimensionless	scaling	parameters	place	OMEGA	jets	in	the	stellar	jet	
regime.

•	 Distinctions	between	double-pulsed	jets	and	single-pulsed	jets	have	 
been observed for the first time.

*E.	C.	Ostriker	et al., Astrophys. J. 557, 443 (2001).


