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Filamentation of high-current relativistic electron beams 
is diagnosed using coherent transition radiation

E16192

•	 Electron-beam	transport	is	studied	by	high-resolution	imaging	of	
coherent transition radiation generated in thin-foil targets.

•	 Experiments	have	been	conducted	on	Al,	Cu,	Sn,	and	Au	foil	targets	of	
varying thickness using LLE’s Multi-Terrawatt (MTW) laser with intensities 
of ~1019 W/cm2.

•	 Images	of	the	target	rear	side	show	well-defined	filamentary	structures	
and ring-like patterns of the emission.

•	 The	electron	beam	diverges	with	a	half	angle	~16°.

•	 The	electron	temperature	of	the	fast-electron	beam	is	inferred	to	 
be 1 MeV.

•	 At	Thot ~ 1-MeV velocity dispersion in the electron beam is the dominant 
process effecting the CTR signal.

Summary
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Coherent transition radiation (CTR) provides information  
on the dynamics of relativistic electron-beam transport

E15230a

•	 Transition	radiation	(TR) is produced when electrons cross a refractive-
index	interface.

•	 CTR	arises	from	the	coherent	addition	of	the	underlying	TR	fields.

•	 The	source	of	the	coherence	is	traced	back	to	the	longitudinal	density	
structure written into the electron beam by the action of the laser.

*J. Zheng et al., Phys. Plasmas 10, 2994 (2003).
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A transition-radiation diagnostic provides
high-resolution images of the rear-surface
emission using the MTW laser

E16194
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Filamentary structures are seen superimposed 
onto a ring-like structure
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A rapid decrease in the CTR signal is observed  
with increasing target thickness
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Fluctuations in the CTR signal indicate that the coherent part of the 
fast-electron beam is not characteristic of the general population.



A	fit	has	been	made	to	a	simplified	analytical	
model to infer the electron temperature1

E16199

•	 The	model	accounts	for	only	the	effects	of	velocity	dispersion	 
of the beam.

•	 The	estimated	current	~1 MA . 20# the Alfven limit.
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The fall off in CTR is in agreement with the model for Thot = 1.1±0.2 MeV.

1J. Zheng et al., Phys. Plasmas 10, 2994 (2003).



A reduction of the CTR signal with increasing target 
density indicates collisional effects
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At Thot ~1 MeV, velocity dispersion is the dominant process 
affecting the integrated energy in the CTR signal.



Averaged over all metals the observed electron-beam 
divergence is of the order of 16°
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An ability to increase the energy into the coherent part of the 
beam would be useful for directing fast-ignition electrons.  

Evidence	exists	that	the	
coherent part of the fast- 
electron beam propagates 
with lower divergence than 
the incoherent part.1,2 

1J. Santos et al., Phys. Rev. Lett. 89, 025001 (2002).              
2H. Popescu, Phys. Plasmas 12, 063106 (2005). 
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Summary/Conclusions

Filamentation of high-current relativistic electron beams 
is diagnosed using coherent transition radiation

•	 Electron-beam	transport	is	studied	by	high-resolution	imaging	of	
coherent transition radiation generated in thin-foil targets.

•	 Experiments	have	been	conducted	on	Al,	Cu,	Sn,	and	Au	foil	targets	of	
varying thickness using LLE’s Multi-Terrawatt (MTW) laser with intensities 
of ~1019 W/cm2.

•	 Images	of	the	target	rear	side	show	well-defined	filamentary	structures	
and ring-like patterns of the emission.

•	 The	electron	beam	diverges	with	a	half	angle	~16°.

•	 The	electron	temperature	of	the	fast-electron	beam	is	inferred	to	 
be 1 MeV.

•	 At	Thot ~ 1-MeV velocity dispersion in the electron beam is the dominant 
process effecting the CTR signal.


