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We have coupled the hybrid PIC code LSP1  
and the fluid code DRACO2 to perform an  
integrated fast-ignition simulation

TC7788

•	 LSP1 is used to simulate the transport of hot electrons in the dense 
plasma of fast-ignition targets.

•	 DRACO2 is used to simulate the implosion, ignition, and burn.

•	 Preliminary	results	show	ignition	of	optimized	spherically	symmetric	
targets3 by a 35-kJ, 2-MeV Gaussian electron beam.

•	 Beam	collimation	by	the	resistive	magnetic	field	reduces	the	energy	
required for ignition.
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FSC

LSP is used to simulate the hot-electron transport 
and	energy	deposition,	while	DRACO is used to 
simulate the target hydrodynamics and burn

TC7790

•	 DRACO
– 2-D cylindrically symmetric hydrodynamic code
– includes all the necessary physics required to simulate 

ignition and burn of the imploded capsules
– does not simulate the hot-electron transport and energy 

deposition

•	 LSP
– 2-D/3-D implicit-hybrid PIC code
–	 implicit	solution	for	the	electromagnetic	fields	and	implicit	

particle push
– hybrid fluid-kinetic description for plasma electrons
–	 intra-	and	interspecies	collisions	based	on	Spitzer	rates	

(have been corrected to include relativistic effects)
– does not simulate fusion reactions and a-particle transport
– uses ideal gas equation of state



LSP is used to generate a hot-electron source term 
in the temperature equation solved by DRACO 

TC7791a

•	 LSP generates the time history of hot-electron-energy 
deposition in plasma to be used in DRACO 

•	 Hydrodynamic	profiles	in	LSP: electron and ion temperatures, 
densities, and velocities are periodically updated according 
to DRACO results (fluid species).	Electromagnetic	fields	and	
hot-electron distributions (kinetic species) are not changed.
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In	the	integrated	simulation,	an	imploded	optimized	 
fast-ignition target* is heated by a 2.2-MeV,  
r0 = 30-nm electron beam
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*R.	Betti	and	C.	Zhou,	Phys.	Plasmas	12, 110702 (2005).
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Snapshots at t = 2.5 ps after the beginning of the e-beam
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LSP	simulations	show	resistive	filamentation	of	the	
e-beam;1,2	the	magnetic	field	helps	to	collimate	the	beam
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The	resistive-filamentation	instability	growth	rate	in	the	
simulation	is	in	agreement	with	theoretical	predictions1
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Ignition is triggered by a 35-kJ electron beam  
in the integrated simulation
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Simulation	with	the	magnetic	field	artificially	suppressed	
predicts a minimum energy for ignition of 100 kJ for the 
same e-beam properties
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Beam	collimation	by	the	resistive	magnetic	field	
reduces the energy required for ignition.
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Summary/Conclusions
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We have coupled the hybrid PIC code LSP1  
and the fluid code DRACO2 to perform an  
integrated fast-ignition simulation

•	 LSP1 is used to simulate the transport of hot electrons in the dense 
plasma of fast-ignition targets.

•	 DRACO2 is used to simulate the implosion, ignition, and burn.

•	 Preliminary	results	show	ignition	of	optimized	spherically	symmetric	
targets3 by a 35-kJ, 2-MeV Gaussian electron beam.

•	 Beam	collimation	by	the	resistive	magnetic	field	reduces	the	energy	
required for ignition.


