
Integrated Simulation of Fast-Ignition ICF

FSC

A. A. Solodov *et al.* University of Rochester Fusion Science Center and Laboratory for Laser Energetics 49th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 12–16 November 2007

UR 🔌

Summary

FSC

We have coupled the hybrid PIC code *LSP*¹ and the fluid code *DRACO*² to perform an integrated fast-ignition simulation

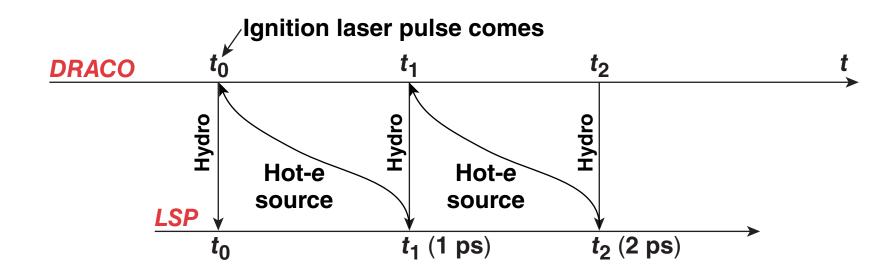
- *LSP*¹ is used to simulate the transport of hot electrons in the dense plasma of fast-ignition targets.
- DRACO² is used to simulate the implosion, ignition, and burn.
- Preliminary results show ignition of optimized spherically symmetric targets³ by a 35-kJ, 2-MeV Gaussian electron beam.
- Beam collimation by the resistive magnetic field reduces the energy required for ignition.

¹D. R. Welch *et al.*, Phys. Plasmas <u>13</u>, 063105 (2006). ²P. B. Radha *et al.*, Phys. Plasmas <u>12</u>, 056307 (2005). ³R. Betti and C. Zhou, Phys. Plasmas <u>12</u>, 110702 (2005).

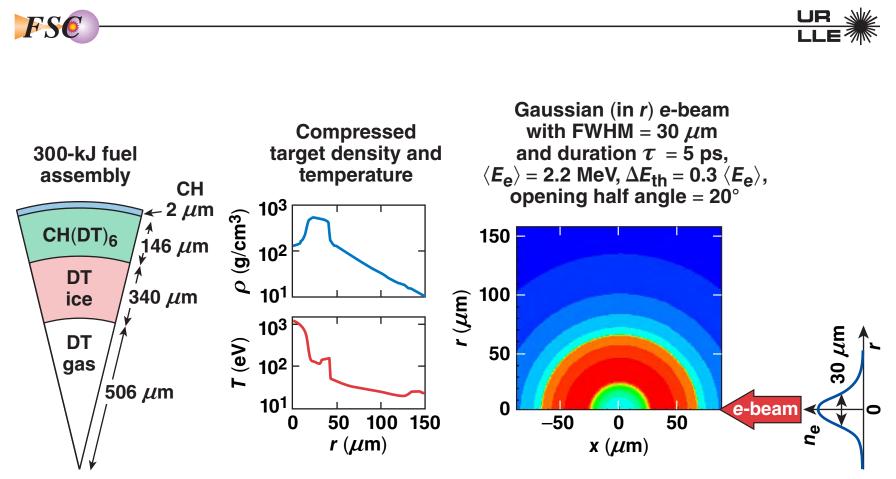
Collaborators

K. S. Anderson, R. Betti, V. Gotcheva, J. Myatt, J. A. Delettrez, and S. Skupsky

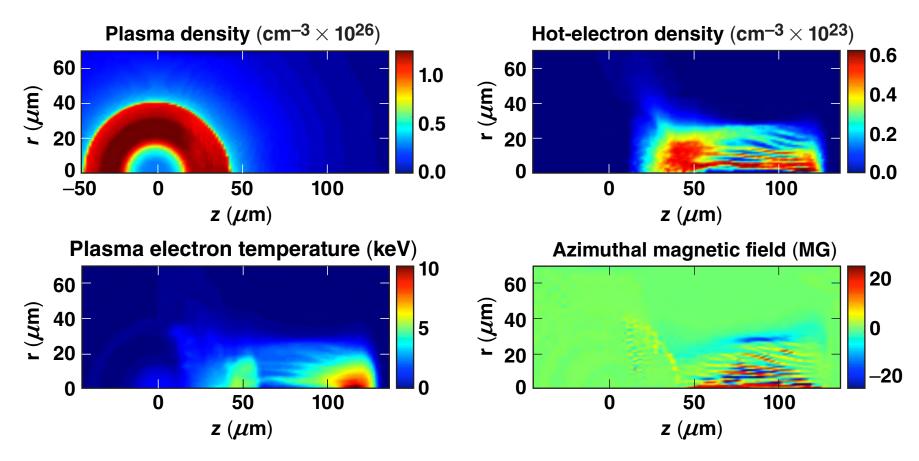
> University of Rochester Fusion Science Center and Laboratory for Laser Energetics


LSP is used to simulate the hot-electron transport and energy deposition, while DRACO is used to simulate the target hydrodynamics and burn

FSC


- DRACO
 - 2-D cylindrically symmetric hydrodynamic code
 - includes all the necessary physics required to simulate ignition and burn of the imploded capsules
 - does not simulate the hot-electron transport and energy deposition
- LSP
 - 2-D/3-D implicit-hybrid PIC code
 - implicit solution for the electromagnetic fields and implicit particle push
 - hybrid fluid-kinetic description for plasma electrons
 - intra- and interspecies collisions based on Spitzer rates (have been corrected to include relativistic effects)
 - does not simulate fusion reactions and α -particle transport
 - uses ideal gas equation of state

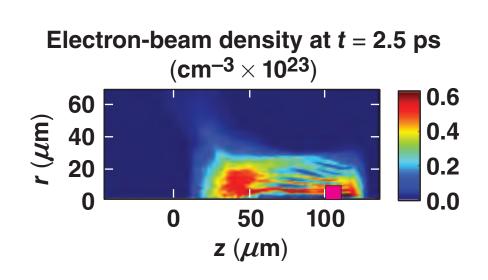
LSP is used to generate a hot-electron source term in the temperature equation solved by DRACO FSE


- LSP generates the time history of hot-electron-energy deposition in plasma to be used in DRACO
- Hydrodynamic profiles in *LSP*: electron and ion temperatures, densities, and velocities are periodically updated according to *DRACO* results (fluid species). Electromagnetic fields and hot-electron distributions (kinetic species) are not changed.

In the integrated simulation, an imploded optimized fast-ignition target* is heated by a 2.2-MeV, $r_0 = 30$ - μ m electron beam

*R. Betti and C. Zhou, Phys. Plasmas <u>12</u>, 110702 (2005).

LSP simulations show resistive filamentation of the e-beam;^{1,2} the magnetic field helps to collimate the beam FSE



Snapshots at *t* = 2.5 ps after the beginning of the e-beam

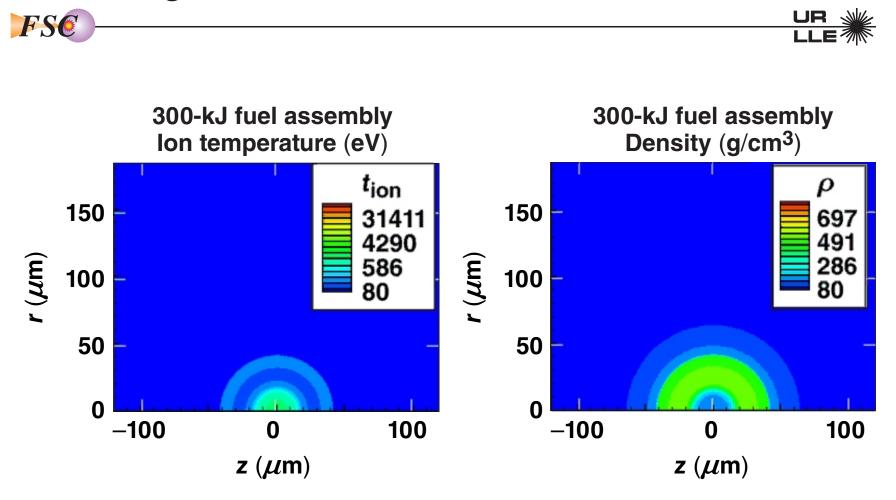
¹L. Gremillet *et al.*, Phys. Plasmas <u>9</u>, 941 (2002).

²J. J. Honrubia and J. Meyer-ter-Vehn, Nucl. Fusion <u>46</u>, L25 (2006).

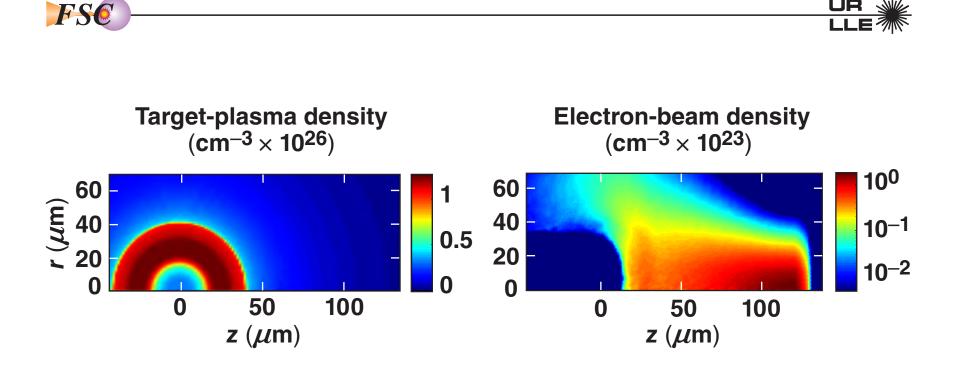
The resistive-filamentation instability growth rate in the simulation is in agreement with theoretical predictions¹

(From Ref. 1) Linear instability growth rate $\Gamma^{\text{theory}} = \frac{2}{\tau_d \gamma_b} \left(\frac{\beta_b}{\beta_b^{\text{th}}}\right)^2,$

where the magnetic diffusion time


$$au_{d} = \mu_{0}c^{2}/(\eta\omega_{b}^{2});$$

 $\Gamma^{\text{theory}} \approx 1.7 \times 10^{12} \text{ s}^{-1}$ at t = 0.5 ps


¹L. Gremillet et al., Phys. Plasmas <u>9</u>, 941 (2002).

FSC

Ignition is triggered by a 35-kJ electron beam in the integrated simulation

Simulation with the magnetic field artificially suppressed predicts a minimum energy for ignition of 100 kJ for the same e-beam properties

Beam collimation by the resistive magnetic field reduces the energy required for ignition.

Summary/Conclusions

We have coupled the hybrid PIC code *LSP*¹ and the fluid code *DRACO*² to perform an integrated fast-ignition simulation

FSC

- LSP¹ is used to simulate the transport of hot electrons in the dense plasma of fast-ignition targets.
- DRACO² is used to simulate the implosion, ignition, and burn.
- Preliminary results show ignition of optimized spherically symmetric targets³ by a 35-kJ, 2-MeV Gaussian electron beam.
- Beam collimation by the resistive magnetic field reduces the energy required for ignition.

¹D. R. Welch *et al.*, Phys. Plasmas <u>13</u>, 063105 (2006). ²P. B. Radha *et al.*, Phys. Plasmas <u>12</u>, 056307 (2005). ³R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).