Nonlocal Ion-Heat and Momentum Transport in ICF Implosions

S. Skupsky *et al.* University of Rochester Laboratory for Laser Energetics 49th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 12–16 November 2007

Summary

Nonlocal ion transport significantly modifies shock propagation and affects peak compression conditions

- Hydrodynamic shock heating, with local transport (and artificial viscosity), produces a temperature structure that is not consistent with the ion-mean-free paths
- With nonlocal ion transport (in the vapor region)
 - the shock front is more diffuse
 - material ahead of the shock is preheated
- Simulations with nonlocal ion transport show modifications of peak-compression conditions
 - temperature is ~25% lower
 - smaller hot spot
 - neutron yield reduced by a factor of 2

Nonlocal ion transport is being applied to simulations of recent low-adiabat cryogenic implosions on OMEGA

• Nonlocal simulation starts at 2.9 ns when the shock is at 200 μ m

The mean-free path is large for ion energies characteristic of heat flow in the vapor region of the target for local transport

UR

Previous work examined the effects of "real" versus "artificial" viscosity and nonlocal ion transport

- Yabe¹ and Tanaka used real viscosity with local transport
 - higher temperature and lower density at peak compression
- Larroche² used an ion Fokker–Planck kinetic code that included real viscosity and nonlocal ion transport
 - shock propagation was modified but had very similar density and temperature profiles at peak compression
- The effect on fusion rates of long mean-free path ions escaping from the "hot spot" has been estimated³.

¹T. Yabe and K. Tanaka, Laser Part. Beams <u>7</u>, 259 (1989).

²O. Larroche, Eur. Phys. J. D. <u>27</u>, 131 (2003).

³D. Henderson, Phys. Rev. Lett. <u>33</u>, 1142 (1974).

lons are transported in straight lines through the computational grid and deposited according to their mean-free paths

- Temperature variation T(x) produces thermal conduction
- Fluid velocity variation $\vec{V}(x)$ produces viscosity

Classical fluid equations (with viscosity) are recovered in the limit of short-mean-free paths.

The nonlocal ion temperature ahead of the shock becomes nearly isothermal as the shock propogates

Nonlocal ion transport results in lower temperature at peak compression—consistent with x-ray emission

LLE

 X-ray emission data at peak compression shows a lower temperature than predicted by 1-D simulations, but NTOF shows a higher temperature.

The neutron yield is a factor of 2 lower for nonlocal transport

Summary/Conclusions

Nonlocal ion transport significantly modifies shock propagation and affects peak compression conditions

- Hydrodynamic shock heating, with local transport (and artificial viscosity), produces a temperature structure that is not consistent with the ion-mean-free paths
- With nonlocal ion transport (in the vapor region)
 - the shock front is more diffuse
 - material ahead of the shock is preheated
- Simulations with nonlocal ion transport show modifications of peak-compression conditions
 - temperature is ~25% lower
 - smaller hot spot
 - neutron yield reduced by a factor of 2

Full simulations with nonlocal ion transport are in preparation.