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Shot 48232, Peak intensity: 8 × 1014 W/cm2, CH[10]Al[1]CH[40] 
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The Te of a shock-heated and compressed ablator in the 
vicinity of the advancing heat front was diagnosed

E16248

•	 Planar	plastic	foils	with	a	buried	Al	tracer	layer	were	irradiated	
with shaped laser-pulse drives having peak intensities  
of 0.1 to 1.0 × 1015 W/cm2.

•	 Shock	heating	and	heat-front	penetration	were	inferred	from	
time-resolved Al 1s-2p x-ray-absorption spectroscopy.  

•	 The	level	of	preheat	prior	to	shock-wave	heating	was	
estimated from the measured photon-energy shift of the Al 
K-edge to be less than a few eV.  

•	 Predictions	of	a	nonlocal	transport	model*	are	close	to	the	
experimental results.

Summary

Al 1s-2p absorption spectroscopy can experimentally resolve the 
shock-heated and compressed shell from the advancing heat front.

*V.	N.	Goncharov,	Phys.	Plasmas	13, 012702 (2006).
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Plasma conditions are measured with x-ray-absorption 
spectroscopy of a CH planar target with an Al tracer layer
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•	 The	buried	depth	of	the	Al	layer	is	varied	 
to probe a different portion of the drive foil
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Al 1s-2p absorption lines are monitored to diagnose 
shock heating and heat-front penetration
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	•	The	plasma	conditions	in	the	shock-heated	and	
compressed Al layer are in the warm dense matter 
regime (tAL = 6 to 16 g/cm3 and Te = 10 to 40 eV).



The nonlocal transport-model predictions of shock 
heating and heat-front penetration for a = 3 are  
close to the experiment
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Foot-to-peak Intensity: 3 to 8 × 1014 W/cm2 (low adiabat, a = 3)
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a = 3 Drive

V.	N.	Goncharov,	Phys.	Plasmas	13, 012702 (2006).

•	 The	nonlocal	transport	model	solves	a	simplified	Boltzmann	
equation and acts like a time-dependent flux limiter.
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At peak compression of the a = 2 drive the  
model underpredicts Te, but the heat-front  
penetration is accurate
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Foot-to-peak Intensity: 5 × 1013 to  1 × 1015 W/cm2 (low adiabat, a = 2)

a = 2 Drive

Predicted tAL = 16 g/cm3
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The predicted shock heating is low and the predicted 
heat-front penetration is early for the high-adiabat drive
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High-adiabat drive

Drive Intensity 1 × 1015 W/cm2

 The predictions are accurate for the 15-nm buried depth.  



Next step:  
Study effects of the different EOS models on the predicted Te.  

The nonlocal model accurately predicts the shock heating 
for high-adiabat drives with I ~ 1 × 1014 W/cm2
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The measured Al K-edge indicates the level of preheat 
before shock-wave heating is less than a few eV
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Preheat

•	 The	position	and	the	steepness	of	K-edge	are	sensitive	to Te and ne.*

	*	D.	K.	Bradley	et al., Phys. Rev. Lett. 59, 2995 (1987).
	**	J.	Al-Kuzee	et al., Phys. Rev. E. 57, 7060 (1998).
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Summary/Conclusions

The Te of a shock-heated and compressed ablator in the 
vicinity of the advancing heat front was diagnosed

•	 Planar	plastic	foils	with	a	buried	Al	tracer	layer	were	irradiated	
with shaped laser-pulse drives having peak intensities  
of 0.1 to 1.0 × 1015 W/cm2.

•	 Shock	heating	and	heat-front	penetration	were	inferred	from	
time-resolved Al 1s-2p x-ray-absorption spectroscopy.  

•	 The	level	of	preheat	prior	to	shock-wave	heating	was	
estimated from the measured photon-energy shift of the Al 
K-edge to be less than a few eV.  

•	 Predictions	of	a	nonlocal	transport	model*	are	close	to	the	
experimental results.

Al 1s-2p absorption spectroscopy can experimentally resolve the 
shock-heated and compressed shell from the advancing heat front.

*V.	N.	Goncharov,	Phys.	Plasmas	13, 012702 (2006).


