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Summary

•	 Previous	work	involving	DT	ablator	designs	indicated	
very little deviation from 1-D target performance.

•	 Precision	ablator	conditioning	may	mitigate	the	effects	
of the early-time imprint.

•	 Modeling	of	ring	plasma	is	critical	for	proper	distribution	 
of laser energy onto the target

•	 Work	is	underway	to	continue	Saturn	modeling	using	
HYDRA with two- and three-dimensional simulations.

DRACO simulations of Saturn ignition designs with  
CH ablators indicate localized early-time imprint
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The Saturn design results from an optimization  
over many parameters*

Sub 38, Run 4532
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*R. S. Craxton et al., Phys Plasmas 12, 056304 (2005).



Hybrid SAGE/DRACO runs indicated little deviation  
from 1-D target performance

Run 4532=4341
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Further validation of the Saturn Polar Drive concept 
required adaptation of the DRACO 2-D code and the 
eventual implementation of the HYDRA 3-D code 

TC8033

•	 DRACO 2-D 

– noise-free, high-resolution 3-D ray trace 

– sliding grid, Eulerian hydrodynamics

– accurate modeling of refraction off of the Saturn ring

•	 HYDRA 3-D

– advanced logical grids

– estimation of m-mode contributions to target performance



Initial DRACO modeling of Saturn designs with  
3-D ray trace resulted in large damaging trenches 
developing during the implosion
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Perturbation trenches develop due to early-time imprint 
from refraction through emerging ring plasma
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Initial PoP studies of the Saturn polar drive-ignition 
design did not examine the use of CH ablators 

TC8047

kg Z k Vac a b=



Precision	ablator	conditioning*	may	hold	the	key	 
to smoothing the early-time ring imprint 
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Saturn Capsule DRACO simulations

*S. A. Slutz et al., Phys. Rev. Lett. 99, 175001 (2007).
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Saturn Capsule DRACO simulations

Precision	ablator	conditioning*	may	hold	the	key	 
to smoothing the early-time ring imprint 

TC8035a *S. A. Slutz et al., Phys. Rev. Lett. 99, 175001 (2007).



Upcoming Saturn simulations will employ the LLNL code 
HYDRA with its flexible use of logical grids
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Summary/Conclusions

•	 Previous	work	involving	DT	ablator	designs	indicated	
very little deviation from 1-D target performance.

•	 Precision	ablator	conditioning	may	mitigate	the	effects	
of the early-time imprint.

•	 Modeling	of	ring	plasma	is	critical	for	proper	distribution	 
of laser energy onto the target

•	 Work	is	underway	to	continue	Saturn	modeling	using	
HYDRA with two- and three-dimensional simulations.

DRACO simulations of Saturn ignition designs with  
CH ablators indicate localized early-time imprint



DRACO now incorporates 3-D laser ray-trace  
routines with enhanced noise reduction
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•	 Ray-trace	noise	reduction

– The initial ray-position 
distribution is defined 
by an inverse-projection 
algorithm.

– Adaptive integrators  
are employed.

– Dynamic adjustment of 
the inverse-projection 
algorithm attempts to 
compensate for refraction.

Far-field plane



Eulerian hydro is required to simulate plasma flow 
between ring and target
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•	 The	complexity	of	the	flow	
makes	it	difficult	to	use	
ALE hydrodynamics.

•	 An	Eulerian	hydro-option	
has been developed and 
integrated into DRACO.

– Godunov-type  
hydro scheme

 – piecewise parabolic 
interpolation

 – moving spherical 
numerical grid



DRACO optimization of ring location does not  
provide relief from the formation of the large  
equatorial perturbations
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