Two-Plasmon-Decay Instability Driven by Incoherent Laser Irradiation

Normalized intensity $(\langle I \rangle / I_0)$ (×10⁻⁵)

A. V. Maximov, J. Myatt, R. W. Short, W. Seka, and C. Stoeckl **University of Rochester** Laboratory for Laser Energetics

49th Annual Meeting of the **American Physical Society Division of Plasma Physics Orlando**, FL 12-16 November 2007

LLE

Summary

The onset of TPD instability and preheat in direct-drive plasmas is strongly influenced by laser-beam incoherence

- For parameters of laser-plasma interaction in OMEGA plasmas, the threshold of TPD depends on the interplay between
 - plasma inhomogeneity
 - wave damping
 - resonance detuning due to beam incoherence
- When the density scale length is large enough, the low-frequency density perturbations can reduce the TPD growth.

In OMEGA experiments, the hard x-ray production depends on the overlapped intensity of multiple incoherent laser beams

The growth rate of the TPD instability can be proportional to the average laser intensity

• Equation for the growth rate γ (in random phase approximation):

$$\frac{2(\gamma + \gamma_{e})}{\omega_{p_{0}}} = -\mathrm{Im} \int \frac{d\vec{k}_{0}}{k_{0}\Delta\theta} \frac{\langle |v_{0}|^{2} \rangle F(\vec{k}_{0},\vec{k})}{2i(\gamma + \gamma_{e})\omega_{p_{0}} - \frac{3v_{Te}^{2} \left[(\vec{k}_{0} - \vec{k})^{2} - (\vec{k}_{0C} - \vec{k})^{2} \right]}{3v_{Te}^{2} \left[(\vec{k}_{0} - \vec{k})^{2} - (\vec{k}_{0C} - \vec{k})^{2} \right]}$$
where $F(\vec{k}_{0},\vec{k}) = \frac{\left(k_{0}^{2} - 2\vec{k}_{0}\vec{k}\right)^{2}}{4\left[(\vec{k}_{0} - \vec{k})^{2}k^{2} \right]} k_{\perp}^{2}$
 $\gamma_{e^{-}}$ damping coefficient $\lambda_{e^{-}} \lambda_{e^{-}} \lambda_{e^{$

• Large resonance width: $(\gamma + \gamma_e) \ll \Delta \omega$

$$\gamma + \gamma_{e} = \frac{\pi}{4} \frac{\langle |v_{0}|^{2} \rangle F(\vec{k}_{0C}, \vec{k})}{\Delta \omega}$$

The increase of the angular width of an incoherent laser beam leads to the decrease of TPD growth rate and to the increase of the threshold

Thresholds of TPD in OMEGA plasmas are influenced by the density inhomogeneity scale

 Different studies^{*} have shown that for TPD in inhomogeneous plasmas the absolute growth rate

$$(\gamma/\omega_{p0})_{inhom} = (\gamma/\omega_{p0})_{hom} - \Delta_{inhom} - (\gamma_e/\omega_{p0})$$

 $\Delta_{inhom} \sim 1/k_0 L_N$

- For OMEGA plasmas the density scale length near quarter-critical density $L_N = (150-400)\mu m$
- Low-frequency density perturbations can increase the effective damping

$$\gamma_{e} \sim \sqrt{\left(\delta N\right)^{2}} \sim 1\!\big/\gamma_{ia}$$

- *C. S. Liu and M. N. Rosenbluth, Phys. Fluids <u>19</u>, 967 (1976).
- B. F. Lasinski and A. B. Langdon, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-77, 4-49 (1978).
- A. Simon et al., Phys. Fluids <u>26</u>, 3107 (1983).

For parameters of OMEGA plasmas, the TPD instability threshold is influenced by the interplay of several parameters

- Homogeneous three-wave growth rate $\gamma^0 = \frac{k_0 |V_0|}{\omega_{p0}} = 8.2 \times 10^{-3} \sqrt{I_{15}}$
- Detuning due to beam incoherence

$$\frac{\Delta\omega}{\omega_{p0}} = 2 \times 10^{-3} \left(T_{e} / 2 \, \text{keV} \right) \left(\frac{\Delta\theta}{0.2} \right) \sin\theta_{c}$$

Plasma-wave damping

$$\left(\frac{\gamma_{e}}{\omega_{\rho 0}}\right)_{coll} = 0.5 \times 10^{-3} \frac{(Z/5.3)}{(T_{e}/2 \text{ keV})^{3/2}}$$

• Detuning due to inhomogeneity

$$\frac{1}{k_0 L} = \frac{4.2 \times 10^{-4}}{(L/150 \ \mu m)}$$

In OMEGA experiments, the hard x-ray production depends on the overlapped intensity of multiple incoherent laser beams

Low-frequency perturbations in electron density are produced by the interaction of incoherent laser beams with plasmas

$$\langle I \rangle = 9 \times 10^{14} \text{ W/cm}^2, \ T_e = 2 \text{ keV}, \ n_e = \frac{n_c}{4} \qquad \left(\frac{n_e}{n_0} - 1\right) \sim \frac{I}{\langle I \rangle}$$

The low-frequency perturbations in the electron density can detune the TPD resonance and reduce the TPD growth

The onset of TPD instability and preheat in direct-drive plasmas is strongly influenced by laser-beam incoherence

- For parameters of laser-plasma interaction in OMEGA plasmas, the threshold of TPD depends on the interplay between
 - plasma inhomogeneity
 - wave damping
 - resonance detuning due to beam incoherence
- When the density scale length is large enough, the low-frequency density perturbations can reduce the TPD growth.