X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA

Summary

X-ray spectral measurements diagnose conditions in the compressed plasma

- Time-integrated, space-resolved core x-ray spectra are obtained with both pinhole cameras and Kirkpatrick–Baez microscopes dispersed by transmission gratings.
- The shapes of the spectra allow inference of the core electron temperature (kT_e) from the slope of the spectrum at high energies.
- In selected cases, the surrounding main fuel layer areal density $(\rho R_{\rm fuel})$ is inferred from absorption at low energies.
- These results provide important benchmarks for the predictions of 1-D and 2-D hydrocode simulations.

J. P. Knauer, T. C. Sangster, J. A. Delettrez, P. W. McKenty, R. Epstein, V. N. Goncharov, and B. Yaakobi

> Laboratory for Laser Energetics University of Rochester

Related talk to follow by R. Epstein (JO3.00005)

Grating-Dispersed Imaging

X-ray emission from the core of an imploded **OMEGA** target is space and spectrally resolved, enabling the estimation of kT_{hot} and ρR_{cold}

E16280

Cryogenic targets should exhibit an exponential tail with low energy absorption by the cold fuel

Thermal bremsstrahlung from the hot core*

$$\varepsilon_{\rm ff}(\nu) = 6.8 \times 10^{-38} Z^2 N_e N_i T^{-1/2} e^{-h\nu/kT} g_{\rm ff}(\nu, T) \text{ erg s}^{-1} \text{ cm}^{-3}$$
$$\varepsilon_{\rm ff}(\nu) \propto e^{-h\nu/kT}_{\rm hot}$$

Absorption by the main fuel layer (free-free absorption)*

$$I(\nu) = I_{hot} e^{-\mu \rho R}$$
fuel
 $\mu(\nu) = 3.7 \times 10^8 \nu^{-3} Z^2 N_e N_i T^{-1/2} \rho^{-1} (1 - e^{-h\nu/kT}) g_{ff} (\nu,T) cm^{-2} g^{-1}$
 $\mu(\nu) \propto \rho E^{-3} T^{-1/2}$ (optical depth $\propto \rho^2 R$)

where $g_{\rm ff}(\nu, T)$ is the velocity-averaged Gaunt factor.

*G. B. Rybicki and A. P. Lightman, *Radiative Processes in Astrophysics* (Wiley and Sons, New York, 1979). See also R. Epstein (JO3.00005) talk to follow

UR

Typical x-ray spectra of OMEGA cryogenic targets are exponential with little sign of absorption

The low-energy portion of the spectrum has been measured with multiple methods to verify the shape

DRACO simulations explain the lack of absorption at low x-ray energies as being due to evolved perturbations

*Unstable implosion due to a high in-flight-aspect-ratio E16283

A significantly different core size and x-ray spectra are seen when higher ρR is achieved

OMEGA cryogenic-D₂ target, grating-dispersed x-ray images 10- μ m-thick CD shell $\langle \rho R \rangle_p$ = 202 mg/cm² 5- μ m-thick CD shell $\langle \rho R \rangle_p$ = 105 mg/cm² **1-mm** regions 47206 47101 200-*µ*m regions (2 to 7 keV) 33- μ m FWHM 51- μ m FWHM

A significant difference is seen in both measured ρR and x-ray spectrum when thicker CD shells are used

DRACO simulations are in excellent agreement* with the observed x-ray spectrum for high ρR and moderate ice roughness

A large increase in observed absorption may be correlated with improved ice-layer uniformity

Summary/Conclusions

X-ray spectral measurements diagnose conditions in the compressed plasma

- Time-integrated, space-resolved core x-ray spectra are obtained with both pinhole cameras and Kirkpatrick–Baez microscopes dispersed by transmission gratings.
- The shapes of the spectra allow inference of the core electron temperature (kT_e) from the slope of the spectrum at high energies.
- In selected cases, the surrounding main fuel layer areal density $(\rho R_{\rm fuel})$ is inferred from absorption at low energies.
- These results provide important benchmarks for the predictions of 1-D and 2-D hydrocode simulations.