Laser Channeling in Millimeter-Scale Underdense Plasma of Fast Ignition

G. Li University of Rochester Laboratory for Laser Energetics

49th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 12–16 November 2007

UR 🔌

Summary

A clean channel can be established by a high-intensity laser in the underdense plasma of fast-ignition targets

- Laser channeling in mm-scaling plasmas is a highly nonlinear and dynamic process.
- Channel bifurcation/self-correction leads to oscillating v_c << v_q
 - laser snowplowing causes $v_c \sim v_{hb}$
- A lower-intensity pulse reduces the required energy
 - the $T_{\rm c}$ < 100-ps requirement sets $I_{\rm min}$ = 5 \times 10¹⁸ W/cm² and $E_{\rm c}$ = 3 kJ
- Channeling significantly improves the ignition-pulse transmission

Collaborators

C. Ren R. Yan V. N. Goncharov

University of Rochester Laboratory for Laser Energetics

> T. L. Wang W. B. Mori J. Tonge

University of California, Los Angeles

Channeling in the underdense plasma can reduce the energy loss of the ignition pulse

• An initial channeling pulse can be used to establish a channel to reduce energy loss of the ignition pulse

- We have performed 2-D and 3-D PIC simulations to find
 - what is the channel-advancing speed?
 - what is the required pulse energy?
 - what is the transmittance of the ignition pulse through the channel?

1.0

0.8

0.6

0.4

0.2

0.0

0

n_e/n_c

 $-x = 100 \ \mu m$

250 µm

Ш

>

1000

Wavelength 1 μ m

Spot size 14 μ m

800

m

06

Ш

N

 $I = 10^{18} \sim 10^{20} \text{ W/cm}^2$

600

 $\mathbf{x} (\boldsymbol{\mu} \mathbf{m})$

Density profile

 $T_{o} = T_{i} = 1 \text{ keV}$

200

 $n_{e} = 0.1 n_{c} * Exp (x/430)$

DT plasma with M/m = 4590

400

Channeling is a complicated process involving many nonlinear phenomena

Longitudinal channel advancing is intermittent

- Longitudinal advancing involves many highly nonlinear processes
 - plasma piling up
 - laser hosing/refraction leads to channel bending
 - channel bifurcation/ self-correction
- These phenomena can be observed only in simulations with $L_{\rm X}$ > 100 μ m

Phase space xy Time = 3.4 ps

160 240 320 400

 $x (\mu m)$

160 80

80

240

0

TC7927

0

y (*µ*m)

Channeling speed oscillates and asymptotes to hole-boring speed*

- Channeling speed v_c should measure the density-modification speed
- Oscillating v_c reflects the bifurcation-self-correction process
- v_c << v_g and asymptotes to v_{hb}
 - $v_{\rm hb} = 0.6 \ {\rm c} \ (n_{\rm c} m_{\rm e} I_{18} \lambda_{\mu}^2 / n_0 m_i)^{1/2}$
 - v_{hb} assumes 100% laser reflection (not satisfied)

*S. C. Wilks et al., Phys. Rev. Lett. <u>69</u>, 1383 (1992).

A lower-intensity pulse is preferred to minimize incident laser energy

UR

• Simulation scaling

– for
$$v_c$$
 analysis T_c = 290 $I_{18}^{-0.64}$ ps and E_c = 1.71 $I_{18}^{0.36}$ kJ

- for v_{hb} analysis T_{hb} = 220 \times L_{μ} /430 \times I_{18} ^{-0.5} ps and E_{hb} = 1.3 \times L_{μ} /430 \times I_{18} ^{0.5} kJ
- $E_c \sim I_{18}^{0.36}$ shows that a low-intensity pulse is preferred to minimize E_c
- If $T_{\rm C}$ < 100 ps is required, $I_{\rm min}$ = 5 imes 10¹⁸ W/cm² and $E_{\rm C}$ = 3 kJ

A preformed channel significantly improves the transmission of the ignition pulse

UR

TC7930

3-D channeling is faster than 2-D because of stronger self-focusing

Summary/Conclusions

A clean channel can be established by a high-intensity laser in the underdense plasma of fast-ignition targets

- Laser channeling in mm-scaling plasmas is a highly nonlinear and dynamic process.
- Channel bifurcation/self-correction leads to oscillating v_c << v_q
 - laser snowplowing causes $v_{c} \sim v_{hb}$
- A lower-intensity pulse reduces the required energy
 - the $T_{\rm c}$ < 100-ps requirement sets $I_{\rm min}$ = 5 \times 10¹⁸ W/cm² and $E_{\rm c}$ = 3 kJ
- Channeling significantly improves the ignition-pulse transmission