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The new nonlocal ion-heating transport model is being 
developed to study hot-spot formation in ICF designs

TC7921

•	 The model is based on the solution of a simplified
	 Boltzmann equation.

•	 The hot spot can be preheated by the nonlocal effect.

•	 The model prediction for the peak proton shock-yield
	 rate is in good agreement with the experimental data.

•	 The model is currently being applied to cryogenic targets.

Summary
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A local ion-heat transport model does not
agree with experimental results

TC7521a
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Nonlocal ion transport affects
hot-spot formation in ICF targets

TC7924
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A new model has been developed to calculate 
the ion-heat flux and ion viscosity

TC7922

•	 A simplified Boltzmann equation (Krook model)
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•	 Ion heat flux

•	 Ion viscosity	



The shock profiles are modified by nonlocal 
ion-heat flux and ion viscocity

TC7923

CH 26.9 nm

D3He
3.6 atm

44
1 
n

m

Laser

0 50 100 150 200
Distance (nm)

Io
n

 t
em

p
er

at
u

re
 (

ke
V

)

1.5

1.0

0.5

2.0
Local

Nonlocal ion-
heat model

Nonlocal ion heat
and viscosity

Laser

0 20 40 60 80
Distance (nm)

M
as

s 
d

en
si

ty
 (

g
/c

m
3 )

10–1

10–2

10–3

Local

Nonlocal
ion-heat and

viscosity

Ion viscosity

37661



The shock yield is reduced by nonlocal modes,
which is in better agreement with experiments

TC7925
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•	 Shock nonuniformity can contribute to the burn broadening.



The new nonlocal model is applied into the high- 
pressure gas target with different thicknesses

TC7932
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The new nonlocal ion-heating transport model is being 
developed to study hot-spot formation in ICF designs

TC7921

Summary/Conclusions

•	 The model is based on the solution of a simplified
	 Boltzmann equation.

•	 The hot spot can be preheated by the nonlocal effect.

•	 The model prediction for the peak proton shock-yield
	 rate is in good agreement with the experimental data.

•	 The model is currently being applied to cryogenic targets.


