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Si doping reduces ablation-front RT growth

E16269

•	 Silicon doping reduces hard x rays from two-plasmon decay*

•	 2-D hydrodynamic simulations of silicon-doped ablator experiments 
agree with the measured Rayleigh–Taylor (RT) growth

	 	 –	 experiments with 3% Si-doped CH foils

	 	 –	 experiments with 6% Si-doped ablators that are planar surrogates 
for cryogenic implosions

•	 Measured neutron yields from a = 2 warm target implosions increase 
when silicon is added to the ablator

Summary

*P. B. Radha (JO3.00002), J. A. Delettrez (JO3.00003)
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Calculations show Si-doped ablators reduce number of 
fast electrons and RT growth at the ablation surface
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•	 A high adiabat in the ablation 
region reduces RT growth.2

•	 Laser intensity
		  I = 8 # 1014 W/cm2

•	 Calculated implosion velocity
		  Vi = 3 # 107 cm/s

•	 TPD threshold parameter (h)1 
		  reduced
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1A. Simon et al., Phys. Fluids 26, 3107 (1983).
2S. E. Bodner et al., Phys. Plasmas 5, 1901 (1998).
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Ablation-interface RT growth was measured 
for silicon-doped CH planar foils
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•	 Imposed perturbations

		  m = 60 nm
			   a0 = 0.25 nm
			   (0.5 nm p–v)

		  m = 30 nm
			   a0 = 0.125 nm
			   (0.25 nm p–v)
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2-D simulations for undoped and Si-doped targets 
agree with the experimental data
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Ablation-interface RT growth in reduced for 30-nm-wavelength 
perturbations when Si is added to the CH.



Current planar-RT experiments are surrogates 
for spherical cryogenic target implosions
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•	 Imposed perturbations

		  m = 30 nm
			   a0 = 0.25 nm
			   (0.5 nm p–v)

		  m = 120 nm
			   a0 = 1.0 nm
			   (2.0 nm p–v)

RF foam
t = 180
 mg/cc

CH

6% Si-doped CH

0
0

1

2

3

1 2

a = 3
Cryogenic implosion pulse shape

Time (ns)

I L
as

er
 (

10
14

 W
/c

m
2 )

3 4



Perturbation amplitudes calculated by 2-D hydrodynamic 
simulations agree with the measured amplitudes
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Perturbation amplitudes calculated by 2-D hydrodynamic 
simulations agree with the measured amplitudes
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Neutron yields and absolute x-ray intensities were 
measured with spherical target implosions

E16274 P. B. Radha (JO3.00002), J. A. Delettrez (JO3.00003)
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The measured neutron yields become closer  
to simulation as Si thickness is increased
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Measured neutron yield for a = 2 implosions increases 
when 3 nm of Si doped CH is added to the ablator.

The measured neutron yields become closer  
to simulation as Si thickness is increased
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Summary/Conclusions

Si doping reduces ablation-front RT growth

*P. B. Radha (JO3.00002), J. A. Delettrez (JO3.00003)

•	 Silicon doping reduces hard x rays from two-plasmon decay*

•	 2-D hydrodynamic simulations of silicon-doped ablator experiments 
agree with the measured Rayleigh–Taylor (RT) growth

	 	 –	 experiments with 3% Si-doped CH foils

	 	 –	 experiments with 6% Si-doped ablators that are planar surrogates 
for cryogenic implosions

•	 Measured neutron yields from a = 2 warm target implosions increase 
when silicon is added to the ablator


