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Tests of multi-megagauss �eld generation via laser-driven 
magnetic-�ux compression are underway on OMEGA

E16184

FSC

(9 to 15 T)

 for upcoming experiments ( )

Summary

Magnetized plasma experiments are important
for basic ICF research and HEDP applications
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  – magnetic (thermal)
implosions (MIF campaign)

  – electron thermal transport in target-generated magnetic �elds
  – fast-electron transport in compressed plasmas; magnetic-�eld 

FSC

High magnetic �elds can be generated via compression 
of a seed �eld by laser-generated plasmas

E15685a

FSC

Bz

I0
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Laser

target via an exploding wire

The axial seed �eld is created in 

target.

Proposed laser-driven �ux-compression experiments 
on OMEGA are initially focused on MIF1
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  – magnetic-�eld compression and measurement

  – effects on the implosion dynamics and stagnation parameters

  – development of optimal �eld geometry and target con�guration

  – measurement of the effect of magnetic insulation on the hot-spot 
temperature

  – thermal transport in the axial magnetic �eld; effect on the hydro-
efficiency and implosion symmetry

FSC

1 Magneto-Inertial Fusion. Particularly high-gain MIF as de�ned in
J. Phys; Conf. Series (IOP).

In the MIF approach, massive ICF targets imploded 
with low velocity provide higher gains*
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-implosion velocities Vi “cold” hot spot: 

Vi and the gain increased
-

FSC

G
E

E

V
1
.laser i

1 3+=

T V .
hs i

1 3+

* 12, 110702 (2005).

Effective reduction of the hot-spot thermal losses via 
magnetic insulation requires �elds of hundreds of MGauss
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-MJ, direct-drive point design*
  – ths ≈ 30 g/cc
  – Ths ≈ 7 keV (before ignition)
  – rhs ≈ 50 nm
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At 10-MG compressed �eld At 100-MG compressed �eld

b ≈ 4 × 104
l⊥ ≈ l||

for ~cexe ≈ 
b ≈ 4 × 10
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Effective �ux compression requires low resistivity 
of the compressing conductive layer
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 where Rem is de�ned through the time constant of exponential diffusion  
of the enclosed �ux
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– diffusion speed

– implosion speeddt
dRvi =

Shock front
jump condition
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The magnetic �eld is �rst trapped in the shock-ionized 
gas �ll and then compressed by the imploding shell
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m in OMEGA cylindrical implosions is high, due to the high-implosion
 velocity (x # 107 cm/s) and high plasma conductivity v= ~ 1018 s–1 in the 

ionized gas �ll.

m ~ 50 is obtained from simulations.
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According to 1-D simulations, a magnetic �eld of 100 MG 
is reached in the D2 hot spot at peak compression
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Particle gyroradii

E
(MeV)

t100 MG
(nm)

e– (Thermal) 0.03 0.056

e– (Hot) 1 0.16

p (D+D) 3.02 25.1

p (D+3He) 14.7 54.8

T (D+D) 1.01 25.1

3He (D+D) 0.82 11.3

4He (D+T) 3.5 26.9

4He (D+3He) 3.6 27.3
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The reduction of thermal conductivity leads to a 
signi�cant increase of the hot-spot temperature in D2
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-�eld compression, the ion temperature in the hot spot 
increases six-fold, compared to the no-�eld case.
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The seed magnetic �eld is generated in a double-coil 
con�guration suitable for OMEGA implosions
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– d = 4.4 mm and R = 2 mm

– L = 14 to 25 nH and R ~ 0.1 X

FSC

*Radia simulation [ et al., J. Synchrotron Radiat. 5, 481 (1998)].
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Simulated* axial B �eld along
the coil axis: From Helmholtz coil
to a magnetic mirror. Note that
ti (D)~5 cm >> [1/B0z dB0z/dz]–1
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A TIM-based, fast discharge delivers energy efficiently, 
while reducing the transmission distance and EMI issues
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of energy (at 36 kV)

- (<1 X) transmission line delivers the energy 
to the low-inductance coil

-contained, needs low-
 24-

FSC

1 device 1 

A seed magnetic �eld of 0.09 to 0.15 MG is measured 
with MIFEDS charged to 25 to 30 kV
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The target will be compressed by 40 OMEGA beams
(~16 kJ) while 20 (8 kJ) are used for proton radiography
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FSC

measured with proton radiography1 
(view from detector plane)

 
to target is 9 mm

-39 detector  
is ~10.5 cm

is intercepted by the coils

are produced by imploding 
3

balloon

target stalk Backlighter
target stalk

4-mm diam
1200-nm wide

860-nm diam and 1.5 mm long

1 et al , 135003 (2006) and references therein.
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De�ection of the 15-MeV protons is used to
measure both the seed and compressed �elds
FSC
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Compressed core

consists of two CR-39

separated by Al �lters, 
followed by an x-ray

 detector.

surface layers of the two 
CR-39 slabs.

De�ection due to �ux compression is superimposed 
on the seed-�eld de�ection of the whole �eld of view
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p

�eld.

140-nm B wire to provide
tR ≈ /cm2, expected
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Experiment
( )

B = 0

5 cm
Uncompressed CH shell

B = 10 T

The protons that have traversed the core were 
completely slowed down in initial experiments
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Selection of tracks by diameter (energy) is necessary  
to expose the particles de�ected in the ampli�ed �eld
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 by diameter (energy)
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Low-adiabat, low-velocity implosions of magnetized ICF 
targets can be pursued in the context of fast ignition

E16190

electrons in fast ignition. beam in 250-g/cc DT mix is greatly 
(right 

side).

FSC

Applications outside of fusion
are being actively considered
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Tests of multi-megagauss �eld generation via laser-driven 
magnetic-�ux compression are underway on OMEGA
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FSC

(9 to 15 T)

 for upcoming experiments ( )
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