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Summary

Tests of multi-megagauss field generation via laser-driven
magnetic-flux compression are underway on OMEGA
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Magnetic-flux compression with lasers can potentially outperform flux
compression via chemical detonation by orders of magnitude.

A series of experiments has been designed to test the concept.

e Numerical simulations show 100-fold field amplification, accompanied
by cross-field, heat-transport inhibition.

e This is used in a new, magneto-inertial approach to ICF, where
significantly higher gains are expected from massive targets.

e A compact seed-field generator (9 to 15T) has been integrated in OMEGA.

* Proton deflectometry was validated as the diagnostic method
for upcoming experiments (December 2007).

Next field-compression implosion experiments scheduled
for 5 December 2007 on the OMEGA laser.
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Magnetized plasma experiments are important
for basic ICF research and HEDP applications
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e |CF studies
— magnetic (thermal) insulation of the forming hot spot in ICF
implosions (MIF campaign)
— electron thermal transport in target-generated magnetic fields

— fast-electron transport in compressed plasmas; magnetic-field
guiding

e Laboratory astrophysics studies of magnetized plasmas

e Charged-particle confinement and collimation; electron—positron
plasma production in the laboratory

* Material properties in high magnetic fields
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High magnetic fields can be generated via compression
of a seed field by laser-generated plasmas
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* A seed field can be seeded in a spherical
target via an exploding wire

* In a cylindrical target using
double coils

An azimuthal seed field is created by

the current in an exploding lithium or The axial seed field is created in
carbon wire. Red lines show current a Helmholtz-type coil outside the
path after gas ionization. target.
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Proposed laser-driven flux-compression experiments
on OMEGA are initially focused on MIF1
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e Cylindrical implosions
— magnetic-field compression and measurement
— effects on the implosion dynamics and stagnation parameters

e Spherical implosions
— development of optimal field geometry and target configuration

— measurement of the effect of magnetic insulation on the hot-spot
temperature

— thermal transport in the axial magnetic field; effect on the hydro-
efficiency and implosion symmetry

1 Magneto-Inertial Fusion. Particularly high-gain MIF as defined in
E16181 Y. C. F. Thio, IFSA 2007, to be published in J. Phys; Conf. Series (IOP).

In the MIF approach, massive ICF targets imploded
with low velocity provide higher gains*
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Assuming ignition, G = E
laser

* Low-implosion velocities V; result in a “cold” hot spot: T, ~ V}'3

e Conventional ICF designs fail to ignite at low-implosion velocities
due to the cold hot spot

* Ignition can be triggered at low V; and the gain increased by using
MGauss magnetic field to reduce the thermal-conduction losses
and increase the temperature in the hot spot

E15683a *R. Betti and C. Zhou, Phys. Plasmas 12, 110702 (2005).

Effective reduction of the hot-spot thermal losses via
magnetic insulation requires fields of hundreds of MGauss
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e Considering NIF 1.5-MJ, direct-drive point design*
— Phs = 30 g/cc
— Ths = 7 keV (before ignition)
— I'hs = 50 um

* Braginskii conductivity used; anomalous effects not considered.
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E15684a *P.W. McKenty et al., Phys. Plasmas 8, 2315 (2001).

Effective flux compression requires low resistivity
of the compressing conductive layer
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where Re,, is defined through the time constant of exponential diffusion
of the enclosed flux
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The magnetic field is first trapped in the shock-ionized
gas fill and then compressed by the imploding shell
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* Re,, in OMEGA cylindrical implosions is high, due to the high-implosion
velocity (x X 107 cm/s) and high plasma conductivity 6| ~ 1018 s~1 in the
ionized gas fill.

* An average value of Rep, ~ 50 is obtained from simulations.
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According to 1-D simulations, a magnetic field of 100 MG
is reached in the D, hot spot at peak compression
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The reduction of thermal conductivity leads to a
significant increase of the hot-spot temperature in Do
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o After effective B-field compression, the ion temperature in the hot spot
increases six-fold, compared to the no-field case.
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The seed magnetic field is generated in a double-coil
configuration suitable for OMEGA implosions
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e Coil dimensions Simulated* axial B field along

the coil axis: From Helmholtz coil
to a magnetic mirror. Note that
 Coil parameters P;i (D)~5 cm >> [1/Bg, dBg,/dz]1

—L=14to25nHand R ~ 0.1 Q

—d=44mmand R =2 mm

E15665a *Radia simulation [O. Chubar et al., J. Synchrotron Radiat. 5, 481 (1998)].

A TIM-based, fast discharge delivers energy efficiently,
while reducing the transmission distance and EMI issues
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e Capacitive discharge system that can safely store up to 130 J

of energy (at 36 kV)

e Low-impedance (<1 Q) transmission line delivers the energy
to the low-inductance coil

e The device is contained in a shielded air box
e Self-contained, needs low-power
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E15143b MIFEDS1 device

1 Magneto-Inertial Fusion Electrical Discharge System

Deflection of the 15-MeV protons is used to
measure both the seed and compressed fields
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target e The detector package

consists of two CR-39
solid track detectors
separated by Al filters,
followed by an x-ray
Proton detector.

densit
! Compressed core  ® Data are recorded on
both the front and back
surface layers of the two
CR-39 slabs.
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Deflection due to flux compression is superimposed
on the seed-field deflection of the whole field of view
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* Proton density maps at the detector plane

Experiment e Deformation of simulated
(undriven target) conical p beam interacting
with the target and 3-D coil
field.
B=0 B=10T

GEANT4 simulation———

= 4_--__-___________-——"'-__-__-
140-um B wire to provide
PR = 40 mg/cm2, expected

in a compressed target

~—5cm———
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The protons that have traversed the core were
completely slowed down in initial experiments
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e Kinetic energy versus depth curves show that the core-traversing
particles are ranged down in the standard configuration.

e LILAC 1-D simulation results for the compressed target pR were used
in the simulation.
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Selection of tracks by diameter (energy) is necessary
to expose the particles deflected in the amplified field
FSE) fre
e Data from the back of the first CR-39 slab shows the presence
of slowed down protons that have traversed the core.

Simulation with

CR-39 #1 (back) optimized filtration

Shot 45425

_;’;B;t;&;rf.-'—" (a) All protons

l centerline

(b) Select track-
diameter range

High-field deflection

Track-diameter map

* The filter thickness in front of the CR-39 was optimized for recording
the core-traversing protons.

e GEANT4 Monte Carlo simulations show that the selection of proton tracks
by diameter (energy) will help expose the ones traversing the core.
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Low-adiabat, low-velocity implosions of magnetized ICF
targets can be pursued in the context of fast ignition
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GEANT4 simulation
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e Parallel guiding fields for hot
electrons in fast ignition.

* Lateral blooming of 1-MeV electron
beam in 250-g/cc DT mix is greatly
reduced in a 10-MG axial field (right

E16190 side).

A seed magnetic field of 0.09 to 0.15 MG is measured
with MIFEDS charged to 25 to 30 kV
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Applications outside of fusion
are being actively considered
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Possible magnetized-jet experimental
geometry using the MIFEDS seed field

» Generation of positron—electron plasma in the laboratory.1
* Formation and propagation of magnetized plasma jets.

E16191 1J. Myatt et al., Bull. Am. Phys. Soc. 51, 25 (2006).

The target will be compressed by 40 OMEGA beams
(~16 kJ) while 20 (8 kJ) are used for proton radiography
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e Distance from backlighter
to target is 9 mm

Distance to the CR-39 detector
is ~10.5 cm

About 1% of the laser energy
is intercepted by the coils

14.7-MeV fusion protons
are produced by imploding
a D3He-filled glass micro-
balloon

e Compression and fields are
measured with proton radiography
(view from detector plane)

E15146b 1Based on C. K. Li et al., Phys. Rev. Lett. 97, 135003 (2006) and references therein.

Summary/Conclusions

Tests of multi-megagauss field generation via laser-driven
magnetic-flux compression are underway on OMEGA
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* Magnetic-flux compression with lasers can potentially outperform flux
compression via chemical detonation by orders of magnitude.

A series of experiments has been designed to test the concept.

Numerical simulations show 100-fold field amplification, accompanied
by cross-field, heat-transport inhibition.

This is used in a new, magneto-inertial approach to ICF, where
significantly higher gains are expected from massive targets.

e A compact seed-field generator (9 to 15T) has been integrated in OMEGA.

* Proton deflectometry was validated as the diagnostic method
for upcoming experiments (December 2007).

Next field-compression implosion experiments scheduled
for 5 December 2007 on the OMEGA laser.
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