Nonequilibrium Conditions in a Shock Front

D. E. Fratanduono University of Rochester Laboratory for Laser Energetics 49th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 12–16 November 2007

Temperature measurements in foam are consistent with nonequilibrium conditions at the shock front

- Equation-of-state measurements on foam show abnormal independence of temperature with pressure.
- At low densities and high shock velocities the electron temperature can "lag" the ion temperature, creating a non-equilibrium region that can mask the actual temperature.
- A simple radiation transport model mimics observed temperature dependence with equilibration distances of 500 to 1000 nm.
- Optical diagnosis of this phenomenon may be difficult.

M. A. Barrios T. R. Boehly D. D. Meyerhofer Laboratory for Laser Energetics University of Rochester

> D, G. Hicks P. M. Celliers S. Wilks

Lawrence Livermore National Laboratory

J. E. Miller Lockheed Martin

EOS measurements* on Ta₂O₅ foams exhibit temperatures considerably lower than expected

* J. Miller et al., "Equation-of-State Measurements in Ta₂O₅ Aerogel," to be published in the Proceedings of the 15th APS Topical Conference on Shock Compression of Condensed Matter (2007).

** qEOS courtesy D. Young, LLNL

Optical self-emission data are acquired simultaneously with shock velocity from VISAR

Shock energy is initially carried by the ions, then transferred to the electrons by collisions

Pyrometry detects T_{eff}

At sufficiently high velocity and low density, the electron temperature can "lag" the ion temperature.

Hydra-simulations predict ~800-nm equilibration depth in foam

UR LLE

A radiation transport model describes sources and absorption of light in a nonequilibrium plasma

The absorption coefficient is derived from the optical properties of a "conductive" medium

In a simple collisionless plasma model, attenuation of the Plankian spectrum begins at the critical density

Inclusion of a collisional dispersion relation distributes the contribution of sources and attenuation

The model indicates that equilibration distances of 500 to 1000 nm explain the foam-temperature data

LLE

Temperature measurements in foam are consistent with nonequilibrium conditions at the shock front

- Equation-of-state measurements on foam show abnormal independence of temperature with pressure.
- At low densities and high shock velocities the electron temperature can "lag" the ion temperature, creating a non-equilibrium region that can mask the actual temperature.
- A simple radiation transport model mimics observed temperature dependence with equilibration distances of 500 to 1000 nm.
- Optical diagnosis of this phenomenon may be difficult.