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2-D simulations of direct-drive target designs indicate 
ignition requires 2-D SSD single-beam smoothing

TC7941

•	 A low-IFAR wetted-foam ignition design is used to minimize  
the effects of single-beam nonuniformity.

•	 This 1-MJ design was found to require 2-D SSD for ignition.

•	 Simulations show a 1.5-MJ design also needs 2-D SSD  
when single modulators are used in each direction. 

•	 Multiple frequency modulators can be used to significantly  
increase the 1-D SSD single-beam smoothing rate.
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Conventional ICF requires an intermediate  
in-flight aspect ratio

TC7719a

•	 If the in-flight aspect ratio, IFAR = R0/DR, is too high, ignition  
is prevented by hydrodynamic instabilities.

•	 If the IFAR is too low, the low-implosion velocity results  
in too low a hot-spot temperature.

•	 The minimum energy for ignition scales as E ~ (IFAR)–3*

*R. Betti et al., Plas. Phys. and Cont. Fusion, 48 (2006).

A low-IFAR wetted-foam design was developed for  
its comparative insensitivity to single-beam nonuniformity.
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2-D SSD single-beam smoothing is required  
for ignition for the 1-MJ wetted-foam design*

TC7645a

Near peak
compression

End of
acceleration

•	 Integrated simulations include imprint, power imbalance, foam-surface 
nonuniformity (370-nm rms), and 0.75-nm initial ice roughness.
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*T. J. B. Collins et al., Phys. Plasmas 14, 056308 (2007).



A new, low-IFAR, wetted-foam design has been 
developed to study SSD requirements at 1.5 MJ

TC7996

•	 This design was simulated with power imbalance,  
surface and ice roughness, and imprint

*P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).

All-DT 
pt. design

1.5-MJ 
foam

V (nm/ns)  450 409

1-D Gain 45 44

IFAR 60 33

A/DR (%) 30 5

tR (g/cm2) 1.2 1.4

Margin (%) 40 40

All-DT

1693 nm

DT

DT
vapor

3-nm CH

Wetted foam

1500 nm

DT

CH (DT)4

DT
vapor

3-nm CH



A downhill simplex method was used to automatically 
optimize the 1.5-MJ, low-IFAR design

TC8043

•	 The design was optimized in 1-D using a postprocessor to gauge stability.

•	 The 7-D parameter space includes target radius, layer thicknesses, 
and pulse shape.

•	 Starting from an all-DT design, the areal density was raised, IFAR lowered, 
and stability improved.
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TC7994

2-D SSD smoothing is also required for ignition  
for the 1.5-MJ wetted-foam design

Acceleration phase

1-D 1-THz SSD 2-D 1-THz SSD





TC7995

2-D SSD smoothing is also required for ignition  
for the 1.5-MJ wetted-foam design

1-D 1-THz SSD 2-D 1-THz SSD

Deceleration phase





The 1.5-MJ wetted-foam target ignites with 2-D SSD  
but not with 1-D SSD

TC7997
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Multiple frequency modulators can be used to increase 
the 1-D SSD single-beam smoothing rate

TC7944

•	 The smoothing rate is increased by increasing the number of color cycles.

•	 The resulting resonance regions are filled with multiple frequency modulators1.

•	 The 1.5-MJ design, simulated with 1-D multiple-frequency SSD, showed 
dramatically improved performance.

1J. E. Rothenberg, J. Opt. Soc. Am. B 14, 1664 (1997).

See Marozas, JO3.00013, next.

Integrated simulations at the end of the acceleration phase.
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2-D simulations of direct-drive target designs indicate 
ignition requires 2-D SSD single-beam smoothing 

TC7941

Summary/Conclusions

•	 A low-IFAR wetted-foam ignition design is used to minimize  
the effects of single-beam nonuniformity.

•	 This 1-MJ design was found to require 2-D SSD for ignition.

•	 Simulations show a 1.5-MJ design also needs 2-D SSD  
when single modulators are used in each direction. 

•	 Multiple frequency modulators can be used to significantly  
increase the 1-D SSD single-beam smoothing rate.



The shell stability can be increased by lowering the 
implosion velocity and raising the in-flight shell thickness 

TC7450

•	 The most-dangerous Rayleigh–Taylor modes feed through 
to the inner surface and have wavelengths comparable to 
the shell thickness, with wave numbers k ~ DR–1.

•	 The linear growth of these modes depends on the in-flight 
aspect ratio, IFAR:

	 Number of e foldings = ~ ~ IFARt kgt
R

R2 0
/c

D
 

•	 The in-flight aspect ratio depends mainly on the implosion 
velocity and average adiabat:*

~ ,IFAR V
/3 5

2

a

where a = P/PFermi is the adiabat.

*J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998).


