Single-Beam Smoothing Requirements for Wetted-Foam, Direct-Drive-Ignition Target Designs

T. J. B. Collins *et al*. University of Rochester Laboratory for Laser Energetics 49th Annual Meeting of the American Physical Society Division of Plasma Physics Orlando, FL 12–16 November 2007

2-D simulations of direct-drive target designs indicate ignition requires 2-D SSD single-beam smoothing

- A low-IFAR wetted-foam ignition design is used to minimize the effects of single-beam nonuniformity.
- This 1-MJ design was found to require 2-D SSD for ignition.
- Simulations show a 1.5-MJ design also needs 2-D SSD when single modulators are used in each direction.
- Multiple frequency modulators can be used to significantly increase the 1-D SSD single-beam smoothing rate.

Collaborators

J. A. Marozas P. W. McKenty P. B. Radha S. Skupsky J. D. Zuegel

Conventional ICF requires an intermediate in-flight aspect ratio

- If the in-flight aspect ratio, IFAR = $R_0/\Delta R$, is too high, ignition is prevented by hydrodynamic instabilities.
- If the IFAR is too low, the low-implosion velocity results in too low a hot-spot temperature.
- The minimum energy for ignition scales as $E \sim (IFAR)^{-3^*}$

A low-IFAR wetted-foam design was developed for its comparative insensitivity to single-beam nonuniformity.

*R. Betti et al., Plas. Phys. and Cont. Fusion, <u>48</u> (2006).

2-D SSD single-beam smoothing is required for ignition for the 1-MJ wetted-foam design*

• Integrated simulations include imprint, power imbalance, foam-surface nonuniformity (370-nm rms), and 0.75- μm initial ice roughness.

A new, low-IFAR, wetted-foam design has been developed to study SSD requirements at 1.5 MJ

• This design was simulated with power imbalance, surface and ice roughness, and imprint

	All-DT pt. design	1.5-MJ foam
ν (μm/ns)	450	409
1-D Gain	45	44
IFAR	60	33
Α /Δ R (%)	30	5
hoR (g/cm ²)	1.2	1.4
Margin (%)	40	40

UR

^{*}P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).

A downhill simplex method was used to automatically optimize the 1.5-MJ, low-IFAR design

• The design was optimized in 1-D using a postprocessor to gauge stability.

- The 7-D parameter space includes target radius, layer thicknesses, and pulse shape.
- Starting from an all-DT design, the areal density was raised, IFAR lowered, and stability improved.

2-D SSD smoothing is also required for ignition for the 1.5-MJ wetted-foam design

2-D 1-THz SSD

1-D 1-THz SSD

2-D SSD smoothing is also required for ignition for the 1.5-MJ wetted-foam design

1-D 1-THz SSD

2-D 1-THz SSD

The 1.5-MJ wetted-foam target ignites with 2-D SSD but not with 1-D SSD

Multiple frequency modulators can be used to increase the 1-D SSD single-beam smoothing rate

- The smoothing rate is increased by increasing the number of color cycles.
- The resulting resonance regions are filled with multiple frequency modulators¹.
- The 1.5-MJ design, simulated with 1-D multiple-frequency SSD, showed dramatically improved performance.

¹J. E. Rothenberg, J. Opt. Soc. Am. B <u>14</u>, 1664 (1997).

UR

Summary/Conclusions

2-D simulations of direct-drive target designs indicate ignition requires 2-D SSD single-beam smoothing

- A low-IFAR wetted-foam ignition design is used to minimize the effects of single-beam nonuniformity.
- This 1-MJ design was found to require 2-D SSD for ignition.
- Simulations show a 1.5-MJ design also needs 2-D SSD when single modulators are used in each direction.
- Multiple frequency modulators can be used to significantly increase the 1-D SSD single-beam smoothing rate.

The shell stability can be increased by lowering the implosion velocity and raising the in-flight shell thickness

- The most-dangerous Rayleigh–Taylor modes feed through to the inner surface and have wavelengths comparable to the shell thickness, with wave numbers $k \sim \Delta R^{-1}$.
- The linear growth of these modes depends on the in-flight aspect ratio, IFAR:

Number of e foldings =
$$\gamma t \sim \sqrt{kgt^2} \sim \sqrt{\frac{R_0}{\Delta R}} \equiv \sqrt{IFAR}$$

 The in-flight aspect ratio depends mainly on the implosion velocity and average adiabat:*

IFAR ~
$$\frac{V^2}{\langle \alpha \rangle^{3/5}}$$

where $\alpha = P/P_{Fermi}$ is the adiabat.

*J. D. Lindl, *Inertial Confinement Fusion* (Springer-Verlag, New York, 1998).