Single-Beam Smoothing Requirements for Wetted-Foam,

Direct-Drive-Ignition Target Designs
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Including imprint, power balance,
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Summary

2-D simulations of direct-drive target designs indicate
ignition requires 2-D SSD single-beam smoothing
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A low-IFAR wetted-foam ignition design is used to minimize
the effects of single-beam nonuniformity.

* This 1-MJ design was found to require 2-D SSD for ignition.

e Simulations show a 1.5-MJ design also needs 2-D SSD
when single modulators are used in each direction.

* Multiple frequency modulators can be used to significantly
increase the 1-D SSD single-beam smoothing rate.
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Conventional ICF requires an intermediate

in-flight aspect ratio
LLE

* If the in-flight aspect ratio, IFAR = Ry/AR, is too high, ignition
is prevented by hydrodynamic instabilities.

e If the IFAR is too low, the low-implosion velocity results
in too low a hot-spot temperature.

e The minimum energy for ignition scales as E ~ (IFAR)=3"

_ 4 1-Dignition Shell disintegration
Gain | faijls by hydro instabilities
ﬂ Ignition ﬂ
0 >
IFAR

A low-IFAR wetted-foam design was developed for
its comparative insensitivity to single-beam nonuniformity.
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2-D SSD single-beam smoothing is required
for ignition for the 1-MJ wetted-foam design*
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* Integrated simulations include imprint, power imbalance, foam-surface

nonuniformity (370-nm rms), and 0.75-um initial ice roughness.
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*T. J. B. Collins et al., Phys. Plasmas 14, 056308 (2007).

75




A new, low-IFAR, wetted-foam design has been
developed to study SSD requirements at 1.5 MJ
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* This design was simulated with power imbalance,
surface and ice roughness, and imprint
3-um CH

All-DT 1.5-MJ
pt. design foam

V (um/ns) 450 409

1-D Gain 45 44

1693 um WElolels IFAR 60 33

A/AR (%) 30 5
PR (g/cm?2) 1.2 1.4
Margin (%) 40 40

All-DT Wetted foam

TC7996 *P. W. McKenty et al., Phys. Plasmas 8, 2315 (2001).



A downhill simplex method was used to automatically
optimize the 1.5-MJ, low-IFAR design
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* The design was optimized in 1-D using a postprocessor to gauge stability.

* The 7-D parameter space includes target radius, layer thicknesses,
and pulse shape.

e Starting from an all-DT design, the areal density was raised, IFAR lowered,
and stability improved.
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2-D SSD smoothing is also required for ignition
for the 1.5-MJ wetted-foam design
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2-D SSD smoothing is also required for ignition
for the 1.5-MJ wetted-foam design
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The 1.5-MJ wetted-foam target ignites with 2-D SSD

but not with 1-D SSD

UR
LLE
600 | |
Density Density
(g cm3) (g cm3)
E 400 8 8
3 4 4 End of
N 200 0 0 acceleration
00 200 400 600 200 400 600
r (um) r (um)
2-D SSD =D SSD
60 B Tﬁ@m (k@w . n
= Densit Densit
% 40 - P, (9 cm—g) (9 Cm_g) Near peak
~ i 480 9 180 compression
20 240 90
10 ®
0 0
0 | 1 | T | I | | T
0 20 40 60 20 40 60

r (um)

TC7997

r (sm)




Multiple frequency modulators can be used to increase

the 1-D SSD single-beam smoothing rate
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* The smoothing rate is increased by increasing the number of color cycles.

» The resulting resonance regions are filled with multiple frequency modulators.

e The 1.5-MJ design, simulated with 1-D multiple-frequency SSD, showed

dramatically improved performance.
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Integrated simulations at the end of the acceleration phase.

See Marozas, JO3.00013, next.
TC7944 1J. E. Rothenberg, J. Opt. Soc. Am. B 14, 1664 (1997).




Summary/Conclusions

2-D simulations of direct-drive target designs indicate
ignition requires 2-D SSD single-beam smoothing

UR

TC7941

LLE

A low-IFAR wetted-foam ignition design is used to minimize
the effects of single-beam nonuniformity.

This 1-MJ design was found to require 2-D SSD for ignition.

Simulations show a 1.5-MJ design also needs 2-D SSD
when single modulators are used in each direction.

Multiple frequency modulators can be used to significantly
increase the 1-D SSD single-beam smoothing rate.



The shell stability can be increased by lowering the

implosion velocity and raising the in-flight shell thickness
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* The most-dangerous Rayleigh—Taylor modes feed through
to the inner surface and have wavelengths comparable to
the shell thickness, with wave numbers k ~ AR-1.

* The linear growth of these modes depends on the in-flight
aspect ratio, IFAR:

R
Number of e foldings = yt ~ { kgt> ~, / A—g = /IFAR

* The in-flight aspect ratio depends mainly on the implosion
velocity and average adiabat:*

2
IFAR ~ —Y

<O(>3/5 ’

where o = P/Pgermi is the adiabat.

TC7450 *J. D. Lindl, Inertial Confinement Fusion (Springer-Verlag, New York, 1998).



