Gain Curves for Fast-Ignition **Inertial Confinement Fusion** FSC **E**_{Fusion} **E**_{Fusion} **G**_{*T*} = G_M **E**Driver + **E**Petawatt 250 250 Total target gain (G_T) Maximum gain (G_M) 200 200 $E_{\rm PW} = 50 \text{ kJ}$ 150 150 75 kJ 100 100 50 kJ Burn simulations 50 50 Analytical formula 0 0 2 00.2 2 0 **Driver energy (MJ) Driver energy (MJ)** 48th Annual Meeting of the A. A. Solodov, R. Betti, J. A. Delettrez, and C. Zhou **American Physical Society**

Fusion Science Center Laboratory for Laser Energetics University of Rochester 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

Summary

Gain curves for fast-ignition and ignition requirements have been obtained from hydrodynamic simulations of realistic high-gain, fast-ignition targets

- A maximum gain curve has been generated for ignition by a collimated monoenergetic electron beam.
- Simulations using Gaussian laser pulses and ponderomotive temperature scaling for fast electrons predict a minimum laser energy for ignition \geq 100 kJ for λ_L = 1.05 μ m.
- A shorter laser wavelength might be necessary to reduce the range of fast electrons to the fuel core size and lower the ignition energy.

Implosion of the high-density and high- ρR fuel assembly¹ was simulated using the one-dimensional hydrocode *LILAC*²

- Massive cryogenic shells can be imploded with a low-implosion velocity on a low adiabat using a relaxation-pulse technique.³
- Such targets are practically unperturbed by the Rayleigh–Taylor instability justifying 1-D simulation of the implosion.

¹R. Betti and C. Zhou, Phys. Plasmas <u>12</u>, 110702 (2005).

²J. A. Delettrez et al., Phys Rev. A <u>36</u>, 3926 (1987).

³R. Betti et al., Phys. Plasmas <u>12</u>, 042703 (2005).

The two-dimensional, two-fluid hydrocode *DRACO*¹ has been recently modified² to include electron-beam energy deposition into the dense fuel

¹P. B. Radha et al., Phys. Plasmas <u>12</u>, 056307 (2005).

²J. A. Delettrez et al., Plasma Phys. Control. Fusion <u>47</u>, B791 (2005).

³C. K. Li and R. D. Petrasso, Phys. Rev. E <u>70</u>, 067401 (2004).

Ignition is triggered by a 15-kJ, 2-MeV monoenergetic electron beam in the burn simulation

Electron-beam radius $r_0 = 20 \ \mu m$ and duration $\tau = 20 \ ps$.

High gains are possible with small drivers with energy as low as 200 kJ

TC7620 R. Betti, A. A. Solodov, J. A. Delettrez, and C. Zhou, Phys. Plasmas <u>13</u>, 100703 (2006).

Using Maxwellian electrons and Gaussian laser pulses increases the energy required for ignition

(E_{hot}) >> 1: Electron range greatly exceeds the optimal range for fast ignition,²

 $R_{opt} \sim 0.6 \div 1.2 \text{ g/cm}^2$

Gaussian laser pulse

What is the minimum energy for ignition?

¹S. C. Wilks *et al.*, Phys. Rev. Lett. <u>69</u>, 1383 (1992).

²S. Atzeni, Phys. Plasmas <u>6</u>, 3316 (1999).

A minimum laser energy for ignition \geq 100 kJ for $\lambda_L = 1.05 \ \mu$ m

UR 300 kJ target $\lambda = 1.054 \ \mu m$ ho (g/cm³) 869 $\langle \textit{E}_{hot} \rangle$ Minimum **Electron-**E-beam-100 *y (µ*m) 606 **PW** laser beam (MeV) fuel 343 coupling energy energy 80 (kJ)(kJ)efficiency 50 7.7 230 70 0.68 100 6.3 50 0.76 0 T_{ion} (keV) 7791 Ignition energy is minimized 100 y (µm) 5398 for $r_0\simeq$ 25 μ m, $\tau\simeq$ 20 ps. 3005 612 50 $E_{\text{laser}} = 230 \text{ kJ}, \eta = 0.3,$ $r_0 = 25 \ \mu m, \ \tau = 20 \ ps$ 0 -50 50 0

 $\mathbf{x} (\boldsymbol{\mu} \mathbf{m})$

FSC

η_{PW}

0.3

0.5

Frequency doubling reduces the electron mean energy, stopping length, and the minimum energy for ignition*

300 kJ target

-50

50

0

 $x (\mu m)$

 $\lambda = 0.527 \ \mu m$ ρ (g/cm³) 869 **Electron-** $\langle E_{hot} \rangle$ Minimum E-beamηpw 100 *y (µ*m) 606 **PW** laser beam (MeV) fuel 343 coupling energy energy 80 efficiency (kJ)(kJ)50 0.3 110 (230) 33 3.7 0.93 0.5 55 (100) 28 3.2 0.99 0 T_{ion} (keV) 9177 Ignition energy is minimized 100 *y (µ*m) 3658 for $r_0 \simeq$ 20 μ m, $\tau \simeq$ 15 ps. 3538 718 50 $E_{\text{laser}} = 110 \text{ kJ}, \eta = 0.3,$ $r_0 = 20 \ \mu m, \ \tau = 15 \ ps$ 0

Summary/Conclusions

Gain curves for fast-ignition and ignition requirements have been obtained from hydrodynamic simulations of realistic high-gain, fast-ignition targets

- A maximum gain curve has been generated for ignition by a collimated monoenergetic electron beam.
- Simulations using Gaussian laser pulses and ponderomotive temperature scaling for fast electrons predict a minimum laser energy for ignition \geq 100 kJ for λ_L = 1.05 μ m.
- A shorter laser wavelength might be necessary to reduce the range of fast electrons to the fuel core size and lower the ignition energy.