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A general kinetic dispersion relation has been 
developed for relativistic electron beams in plasmas
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• Previous kinetic instability analysis has been restricted  
to real transverse wave vectors.

• Generalizing the dispersion relation to complex wave vectors  
allows investigation of spatial growth and absolute instability.

• Generalization to arbitrary wave-vector angles allows investigation  
of the relative importance of filamentation, two-stream,  
and mixed modes.

• Some preliminary results: absolute instability is restricted  
to larger transverse wavelengths; filamentation generally grows  
faster than two-stream or mixed instabilities.

Summary



Most fast-ignition scenarios require propagation
of a relativistic electron beam through a plasma
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• Large-scale beam instabilities (kinking, pinching) develop slowly
 on the FI timescale.

• Microinstabilities grow faster and include beam–plasma (electrostatic)
 and filamentation (electromagnetic or mixed) instabilities.

• These instabilities require impedance.

  – reactive (electron inertia, Weibel and beam–plasma instability):
   dominant at low densities (few × critical).

  – resisitive (collisional, resistive filamentation): dominant at
   high densities (compressed core).

  – a FI beam will transit both regions (reactive first).

• A fully relativistic treatment of the collisionless case has been  
 carried out analytically; the collisional case is more difficult.



• Assume that, in equilibrium, the charge densities, currents,  
and fields vanish and that all perturbed quantities have the space  
and time dependence e k xi t: -~] g.

• Maxwell’s equations relate the current to the perturbed electric field.
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• The rest of the problem consists of using the plasma properties to 
derive the perturbed current as a response to E (the dielectric tensor).

Instabilities can be treated as a perturbed equilibrium 
provided the growth times are shorter than  
the beam slowing time
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The simplest model treats the return current  
as purely resistive
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• The beam current Jb is assumed collisionless and, in equilibrium,
 is balanced by a return current Jp = –Jb.

• In the resistive model (Gremillet et al.,*), the perturbed current
 is related to the field by E = hJp, where h is the resistivity.

• When the frequencies (real or growth rate) become comparable to h, 
 inertial effects can be included using the result from a fluid treatment
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• At low densities inertial effects dominate the perturbed return current,
 and a collisionless kinetic treatment is appropriate.

*L. Gremillet, G. Bonnaud, and F. Amiranoff, Phys. Plasmas 9, 941 (2002).



The relativistic electron beam can be represented
as a Maxwell–Boltzmann–Jüttner (MBJ) distribution
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• The MBJ distribution is a relativistic generalization of the Maxwellian
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• When the thermal spread is small compared to the beam velocity,
 this can be approximated as a drifting Maxwellian
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• These forms are also used to represent the return current
 in the collisionless case.



In the collisionless case, the perturbed currents are
calculated from the relativistic Vlasov equation
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• The linearized relativistic Vlasov equation can be written as
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• The dispersion relation is obtained by using Maxwell’s equations  
 to relate the fields to the perturbed current:

  .j m
ie p

p
f

d p
m k p

k p
f

pp
d p Eb

2 0 3

0

3
:

:

:
2

2 2

2

=
-

+
-~ c c c ~^

e

h

o

R

T

S
S
SS

V

X

W
W
WW##

• In the drifting Maxwellian approximation, the integrals can be
 expressed in terms of the usual plasma Z-function.

• The exact relativistic integrals can be expressed in terms of integrals

  of the form ,ds
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The filamentary absolute mode is limited to a smaller 
range of wave numbers than the temporal instability
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The spatial growth rates also peak  
at smaller wave numbers
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In general, the filamentary mode predominates  
over the two-stream and mixed modes
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But for some values of the wave number the growth rate 
may peak for a mixed mode

TC7630

i

c
~

1-MeV beam

nb
n0

= 0.01

yT
c

= 0.03

nb = 1020 cm–3

k=c
~b

= 15.0



A general kinetic dispersion relation has been 
developed for relativistic electron beams in plasmas

TC7628

• Previous kinetic instability analysis has been restricted  
to real transverse wave vectors.

• Generalizing the dispersion relation to complex wave vectors  
allows investigation of spatial growth and absolute instability.

• Generalization to arbitrary wave-vector angles allows investigation  
of the relative importance of filamentation, two-stream,  
and mixed modes.

• Some preliminary results: absolute instability is restricted  
to larger transverse wavelengths; filamentation generally grows  
faster than two-stream or mixed instabilities.

Summary/Conclusions


