Time-Dependent Absorption Measurements in Direct-Drive Spherical Implosions

W. Seka University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

Time-integrated absorption measurements agree well with predictions but time-resolved scattered light spectra show small differences

- Measured time-integrated absorption agrees well with hydrodynamic predictions across all targets and pulse shapes including cryogenic implosions.
- Time-resolved absorption measurements show higher absorption during the first 200 ps, that may be due to resonance absorption.
- At high intensities subtle differences between experiments and predictions may be due to nonlinear interaction processes not included in hydrodynamic simulations.

- **R. S. Craxton**
- J. A. Delettrez
 - D. H. Edgell
- V. N. Goncharov
- I. V. Igumenshchev
 - A. V. Maximov
 - J. Myatt
 - R. W. Short

Scattered light is detected behind two focusing lenses (FABS 25 and 30) and in between focusing lenses (H17)

- FABS measurements have contributions from opposing beams that miss the target (required corrections can be significant).
- Measurement: scattered light extrapolated to 4π (E_{scatt})
 - \rightarrow absorption = ($E_{tot} E_{scatt}$)/ E_{tot}
 - calculated deviations from isotropy are in percentage range.

Time-resolved scattered light measurements clearly show onset of absorption in DT, in agreement with predictions

- Measured time-integrated absorption = 67% = LILAC predicted absorption.
- Details of time-resolved absorption differ from predictions around peak irradiation intensity.

Time-integrated absorption data agree quite well with *LILAC* over a wide range of targets, pulse shapes, and irradiation energies

Measured time-resolved scattered-light powers differ from hydrodynamic predictions in subtle ways

Measured time-integrated absorption = 67% = *LILAC*-predicted absorption

Measured time-resolved scattered-light powers differ from hydrodynamic predictions in subtle ways

Measured time-integrated absorption = 67% = *LILAC*-predicted absorption

Measured time-resolved scattered-light powers differ from hydrodynamic predictions in subtle ways

Measured time-integrated absorption = 67% = *LILAC*-predicted absorption

Measured time-resolved scattered-light powers differ from hydrodynamic predictions in subtle ways

Measured time-integrated absorption = 67% = *LILAC*-predicted absorption

Double-picket pulses are well suited for investigating unexpectedly higher absorption at early times

Time-integrated absorption measurements agree well with predictions but time-resolved scattered light spectra show small differences

- Measured time-integrated absorption agrees well with hydrodynamic predictions across all targets and pulse shapes including cryogenic implosions.
- Time-resolved absorption measurements show higher absorption during the first 200 ps, that may be due to resonance absorption.
- At high intensities subtle differences between experiments and predictions may be due to nonlinear interaction processes not included in hydrodynamic simulations.