Investigation of Direct-Drive Shock-Heating using X-ray Absorption Spectroscopy

H. Sawada et al. University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

Localized *T*_e measurements of direct-drive, shock-heated conditions are inferred with x-ray absorption spectroscopy

- Plastic targets (50 μm) with a buried tracer layer of Al (0.5 to 2.0 μm) were irradiated with 0.1 to 1.0 \times 10^{15} W/cm^2 on the OMEGA Laser System.
- The measured time-resolved AI 1s–2p absorption lines were analyzed with a detailed atomic physics code to infer T_e and n_e.
- The inferred T_e 's are close to the predictions of a 1-D hydrodynamics code for drive intensities of 1×10^{14} W/cm², but are higher than the 1-D predictions for 1.0×10^{15} W/cm².

S. P. Regan, R. Epstein, D. Li, V. N. Goncharov, P. B. Radha, D. D. Meyerhofer, T. R. Boehly, V. A. Smalyuk, T. C. Sangster, and B. Yaakobi

> Laboratory for Laser Energetics University of Rochester

> > R. C. Mancini University of Nevada Reno

> > > Related talks: R. Epstein – ZO1.0005 S. P. Regan – RI1.00001

X-ray absorption spectroscopy of a CH planar target with a AI tracer layer was performed with a Sm backlighter

Higher charge states of AI are ionized in succession and absorbed in 1s-2p transitions as the T_e increases

LILAC/Spect3D^{*} simulated 1s–2p absorption spectra

• n_e can be inferred from the Stark-broadened absorption lines for $n_e > 10^{23}$ cm⁻³

Significant changes are observed in the Al 1s–2p absorption spectra as the drive intensity is increased

Absorption spectra predicted with *LILAC*/Spect3D are close to measured spectra for the lower drive intensity

Measured spectra were fit with PrismSpect to infer T_e and n_e assuming uniform plasma conditions

Drive intensity: $1 \times 10^{14} \text{ W/cm}^2$ Shot 44124 CH[10]AI[2.0]CH[40] *t* = 522 ps 1.2 $\Delta L = 2.0 \ \mu m$ 1.0 Expt. Transmission **0.8** 0.6 0.4 Fit 0.2 $T_e = 14 \text{ eV}$ $(n_e = 5.0e + 023 \text{ cm}^{-3})$ 0.0 1.54 1.46 1.48 1.50 1.52 Photon energy (keV)

PrismSpect inputs

- *T*e
- *n_i* or *ρ*
- $\rho\Delta L$ (constant in 1-D)

UR

The measured opacities were lower than calculated for the drive intensity of 1 \times 10^{15} W/cm^2 $\,$

The inferred T_e is close to the 1-D prediction for the drive intensity of 1 \times 10¹⁴ W/cm²

E15201

Localized *T*_e measurements of direct-drive, shock-heated conditions are inferred with x-ray absorption spectroscopy

- Plastic targets (50 μm) with a buried tracer layer of Al (0.5 to 2.0 μm) were irradiated with 0.1 to 1.0 \times 10^{15} W/cm^2 on the OMEGA Laser System.
- The measured time-resolved AI 1s–2p absorption lines were analyzed with a detailed atomic physics code to infer T_e and n_e.
- The inferred T_e 's are close to the predictions of a 1-D hydrodynamics code for drive intensities of 1×10^{14} W/cm², but are higher than the 1-D predictions for 1.0×10^{15} W/cm².