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Ka and Kb emission from PW laser interaction  
with mass-limited foils at RAL is well predicted

TC7467

•	 A semi-analytic model describes the Ka data well and is supported 
by implicit-hybrid PIC calculations (LSP*).

•	 Mass-limited targets simplify the modeling (good “test bed” for FI).

•	 The experimental Ka yields are consistent with classical stopping 
and a constant hot-electron conversion efficiency of ~10%.

•	 The ratio of Kb to Ka signal is sensitive to target heating  
and provides a consistency check on conversion efficiency.

*D. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001).
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Outline

•	 Petawatt-foil experiments are relevant to FI scheme,  
particularly cone-in-shell

•	 Experiments

•	 Mass-limited targets	

•	 Conversion efficiency

•	 Target heating

•	 Future experiments



PW-foil experiments are relevant to cone-in-shell  
fast ignition and high-brightness backlighting

TC7468

•	 In the cone-in-shell scheme,  
the PW laser interacts with  
a solid–density interface

•	 Foils are a simple  
test bed for:

		  –	 hot-electron spectrum
		  –	 conversion efficiency
		  –	 transport

•	 Interaction conditions  
are similar
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K-fluorescence from high-intensity laser-irradiated  
mid-Z foils provides an important diagnostic  
of hot electrons*

TC7469

•	 Hot electrons create  
K-shell vacancies

•	 L→K (M→K) transition
	 gives Ka (Kb) emission

•	 Emission occurs during
	 hot-electron lifetime
	 (few ps)

*	R. B. Stephens et al., Phys. Rev. E 69, 066414 (2004).
	 J. D. Hares et al., Phys. Rev. Lett. 42, 1216 (1979).
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Measurements of K-shell emission from mass-limited 
targets have been performed at the RAL 100 TW  
and PW facilities*

TC7471

•	 Laser intensities of 1018 < I < 1020 W/cm2

•	 A range of target volumes: 10–5 < V < 10–1 mm3

•	 Solid copper targets
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*W. Theobald et al., Phys. Plasmas 13, 043103 (2006).



Mass-limited targets have some remarkable properties
that simplify the modeling

TC7470

•	 The majority of hot electrons stop in the target due  
to space-charge (refluxing)

•	 Secondary radiation production is simple to compute  
(as in infinite medium)

•	 Efficient Ka, Kb radiators

•	 Transparent to K-shell x rays

•	 Access high temperatures at solid density

•	 Can be used to benchmark codes—LSP can model the whole
	 target in 3-D (implicit-hybrid mode)

•	 Good test bed for hot-electron conversion and volumetric heating



A combination of semi-analytic modeling and  
implicit-hybrid PIC calculations have been used  
to investigate RAL 100 TW and PW experiments

TC7472

•	 The semi-analytic model is a modification of calculation  
in Green and Cosslett*

		  –	 classical CSDA stopping, relativistic K-ionization  
		  cross sections

		  –	 refluxing effect is included

		  –	 re-absorption included

•	 LSP contains additional physics

		  –	 collision model requires tuning

		  –	 self-generated fields

		  –	 resistive inhibition and instability of hot current

		  –	 target heating	

*M. Green and V. E. Cosslett, J. Phys. D 1, 425 (1968).



The refluxing efficiency is a parameter in the model, but 
in LSP the trajectories are computed self-consistently

TC7343b

•	 For the parameters of the RAL 
experiments, the hot electron 
refluxing is nearly perfect.

•	 A capacitor/Boltzmann 
electron model is used to 
estimate the importance  
of refluxing.
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Both the semi-analytic model and LSP require  
the hot-electron spectrum and its dependence  
on laser intensity to be specified

TC7475

•	 We chose an exponential distribution for hot-electron energy 
characterized by a temperature Thot.

•	 We assume that for different laser intensities the distribution  
is changed through only the temperature moment.

•	 Intensity is allowed to be a function of space.

•	 The temperature is given by the “ponderomotive scaling” (Wilks*).
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*S. C. Wilks et al., Phys. Rev. Lett. 69, 1383 (1992).



To complete the model K-shell ionization cross section 
and hot-electron stopping power are required

TC7474

•	 vK(E) [taken from Kolbenstvedt1], 
relativistic corrections are essential

•	 The fluorescence probability ~K is 
taken for cold matter at solid density

•	 CDSA range2

n

Need to specify: Ee(= hL→eEL)

1	H. Kolbenstvedt, J. Appl. Phys. 38, 4785 (1967).
2	H. O. Wyckoff, ICRU Report 37, Intern. Comm.  
	 on Radiation Units and Measurements, Inc.,  
	 Bethesda, MD (1984).



The semi-analytical model and the LSP calculations 
agree on the Ka yield

TC7246a
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•	 Hot electron range in LSP is the same as CSDA range

•	 Insensitivity to the laser energy is a direct result of refluxing

20-nm Cu foil



Resistive inhibition would reduce the hot-electron range 
and lead to a lower K-fluorescence production efficiency

TC7479

•	 LSP calculations, using Lee and Moore electrical conductivity,  
show that resistive inhibition is unimportant for the parameters  
of the RAL experiments

•	 Compare classical range with “resistive range”

•	 The electric field E (= j/vCu) ~2 × 105 kV/cm and would stop  
a 1-MeV electron in 50 nm.

•	 This is much less than the collisional range ~700 nm at 1 MeV

•	 Greater than target thickness

		  –	 refluxing hot electrons provide the return current  
		  (much less collisional)

•	 Transit time is only 0.1 ps



The hot-electron conversion efficiency  
can be determined by a fit to the RAL data

TC7243a

•	 The experimental data (here for a particular geometry) is 
consistent with a constant conversion efficiency of ~10%.

a

n

h →



The experimental Ka and Kb yields are essentially 
independent of the target geometry and laser intensity

TC7476

•	 This is a direct prediction  
of refluxing plus cross-
section and stopping 
power

•	 EL varies by a factor of 5

•	 Foil geometry varies  
widely 10–4 < V < 10–1 mm3

•	 Very small mass targets 
(V < 10–4 mm3)  
are excluded
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Previous experiments* indicated that the hot-electron 
conversion efficiency increases dramatically  
with laser intensity

TC7477

•	 These experiments 
are compromised by 
poorly characterized 
interaction conditions.

•	 These are indirect 
measurements and rely 
on model calculations.

*M. Key et al., Phys. Plasmas 5, 1966 (1998).



The model is completely specified if the hot-electron 
conversion efficiency is known

TC7478
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The Kb/Ka ratio can be used as a consistency check 
on the hot-electron conversion efficiency

TC7480

a

b

a

b

•	 For small volume targets, V < 10–4 mm3, the Kb efficiency  
	 is dramatically reduced



The reduction in Kb/Ka ratio for small target volumes  
is expected due to target heating

TC7481

•	 Small volume targets 
can reach temperatures 
of several hundred eV

•	 Depletion of the copper 
M-shell reduces the Kb 
emission relative to Ka

•	 We use T-F to get Z* 
from local [n(x,t), T(x,t)]

•	 Modify (pKa, pKb) 
appropriately
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3-D LSP calculations predict target heating  
for a given conversion efficiency

TC7482

•	 Essentially all of the 
hot-electron energy is 
deposited in the target

•	 Temperature rise  
depends upon the  
energy deposited

•	 Assuming Thomas–
	 Fermi EOS model

•	 Smallest volume 
	 V ~10–4 mm3 targets 
	 are predicted to reach 

several hundred eV
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The Kb/Ka ratio is computed in LSP by modifying  
the K-photon emission probabilities using  
the local temperature 

TC7483

•	 The data is not 
sufficiently precise 
to either confirm or 
reject the conversion 
efficiency obtained  
by fitting the absolute 
Ka yield

•	 Spatial/temporal profile 
has to be taken into 
account (LSP)
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LSP calculations predict the spatial distribution of  
K-emission which will be compared with experiment

TC7484

Three-dimensional LSP calculations
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The results suggest future mass-limited  
foil experiments on OMEGA EP

TC7485

•	 Dedicated experiments 
with well-characterized 
interaction conditions

•	 Kb /Ka ratio probes  
bulk temperature

		  – 	relevant for FI
		  – 	imaging

•	 Consistency  
between absolute  
yield and line ratio

•	 XUV probes surface 
temperature

•	 Benchmark codes



Ka and Kb emission from PW laser interaction  
with mass-limited foils at RAL is well predicted

TC7467

•	 A semi-analytic model describes the Ka data well and is supported 
by implicit-hybrid PIC calculations (LSP*).

•	 Mass-limited targets simplify the modeling (good “test bed” for FI).

•	 The experimental Ka yields are consistent with classical stopping 
and a constant hot-electron conversion efficiency of ~10%.

•	 The ratio of Kb to Ka signal is sensitive to target heating  
and provides a consistency check on conversion efficiency.

*D. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001).

Summary/Conclusions


