
Studies of Adiabat-Shaped Direct-Drive, Cryogenic-Target Implosions on OMEGA

David D. Meyerhofer Laboratory for Laser Energetics ME and Physics Departments University of Rochester 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

UR

Summary

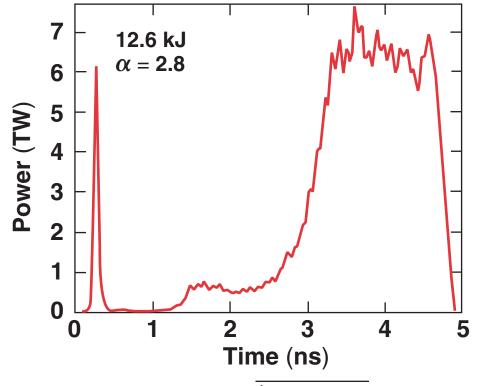
High fuel areal densities are observed in implosions on OMEGA that are energy-scaled from NIF ignition designs

- Cryogenic target layering has produced ice smoothness that meets NIF specifications:
 - <1- μ m rms in all modes in β -layered DT capsules,
 - $<2-\mu$ m rms in all modes in D₂ capsules with auxiliary heating.
- Areal densities in excess of 100 mg/cm² are observed from x-ray and nuclear diagnostics.
- The Lawson criterion for these dense plasmas is $>7 \times 10^{20}$ s/m³ and the fusion parameter is in excess of 10^{20} s-keV/m³.

T. C. Sangster, R. Betti, D. H. Edgell, V. N. Goncharov,
D. R. Harding, R. L. McCrory, M. J. Bonino, L. M. Elasky,
V. Yu. Glebov, D. Jacobs-Perkins, R. Janezic, S. J. Loucks,
L. D. Lund, P. W. McKenty, F. J. Marshall, P. B. Radha,
S. P. Regan, W. Seka, W. T. Shmayda, S. Skupsky,
V. A. Smalyuk, and B. Yaakobi

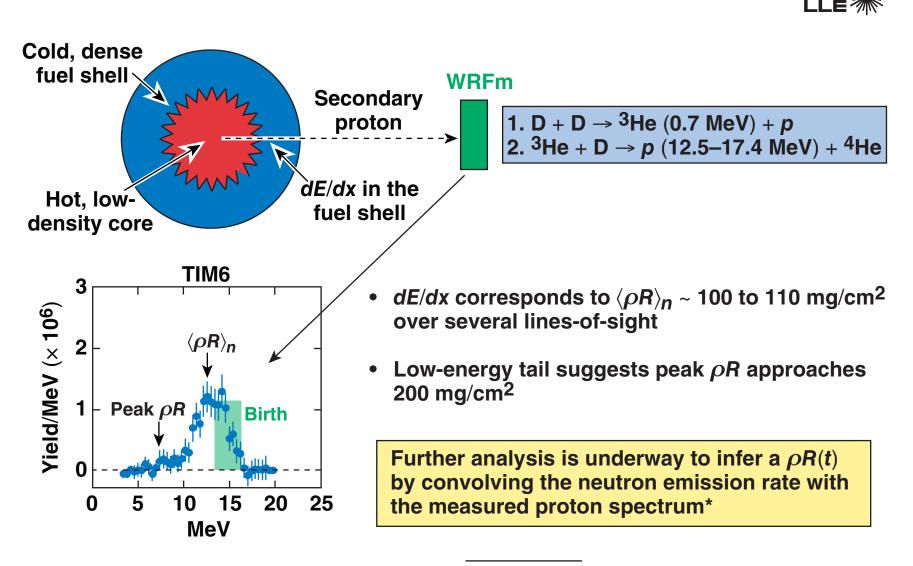
Laboratory for Laser Energetics University of Rochester

R. Petrasso, J. A. Frenje, F. H. Seguin, C. K. Li


Massachusetts Institute for Technology

D. Shvarts

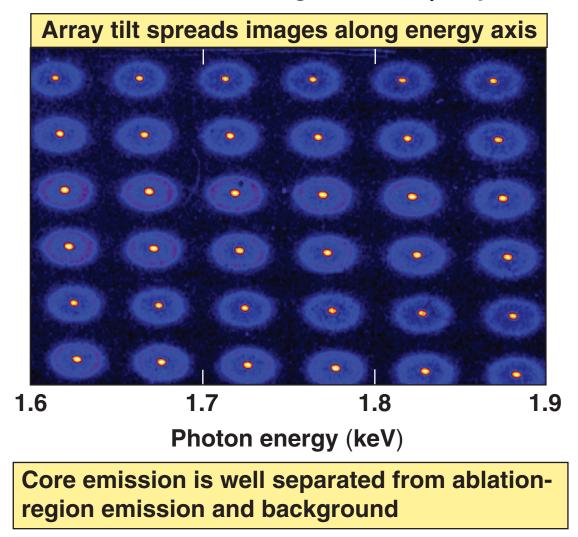
Negev


High-contrast pulse shapes are used to place the target on a low adiabat for high compression

- Cryogenic ice-layer smoothness is routinely below 2- μ m rms.¹
- The picket shapes the target adiabat²
- The peak intensity limits the core temperature for continuum measurements.

¹See T. C. Sangster QT1.00001 ²K. Anderson and R. Betti, Phys. Plasmas <u>10</u>, 4448 (2003).

The neutron averaged areal density $\langle \rho R \rangle_n$ is greater than 100 mg/cm² for cryogenic D₂ implosions

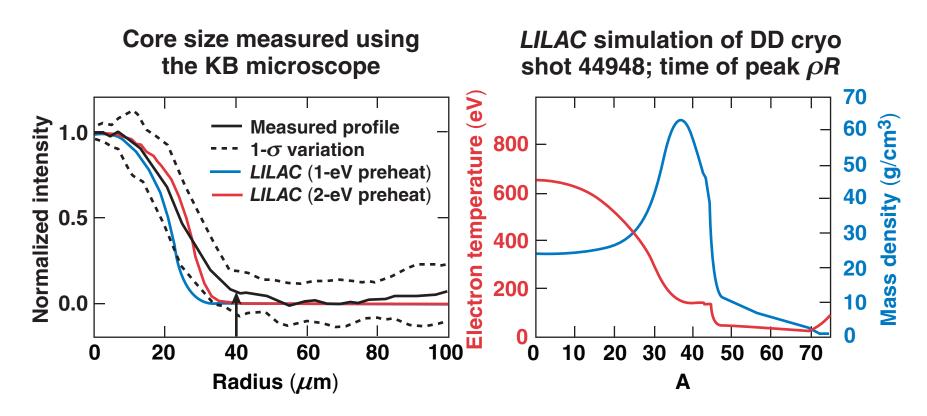


^{*}V. A. Smalyuk et al., Phys. Rev. Lett. <u>90</u>, 135002 (2003).

The core x-ray continuum is measured with a pinhole-array spectrometer

~200 monochromatic images with 50- μ m pinholes

E15272

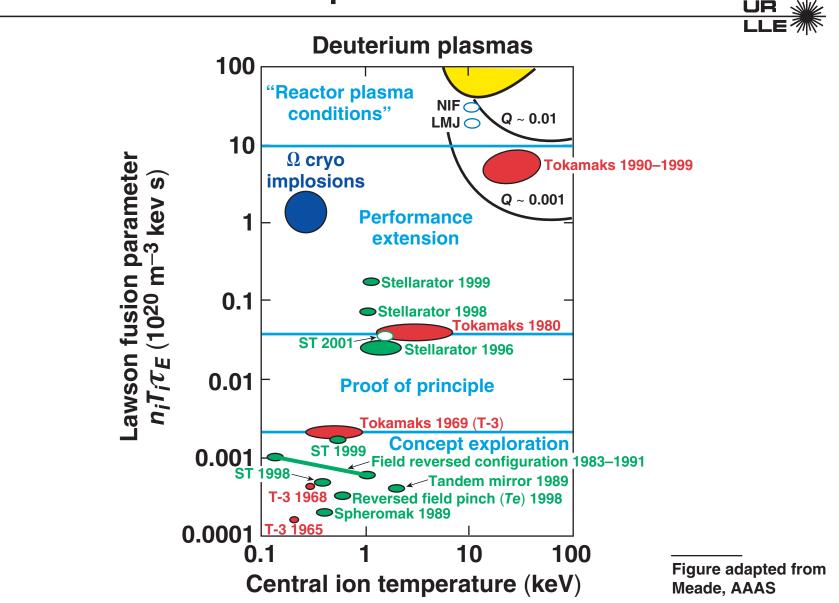

The peak areal density ρR_{peak} may be inferred by using core self emission to backlight the fuel shell

1-D simulations can be used to estimate Emitted x-ray spectrum is the product of a source term ho and suggest the $ho {\it R}_{
m peak}$ could be and an attenuation term as high as 180 to 190 mg/cm² Bremsstrahlung D₂ cryogenic implosion Fluence (10¹⁶ keV/keV) 10 Hot **Absorption** <u>—</u>Е/Т spot -X rays elated to ρR at To ħω Cold shell • Spect = $(e^{-E/kT}_{hot}) \times (e^{-\mu\rho R}_{shell})$, where μ is the mass attenuation coefficient and is proportional to hoExperiment LILAC LILAC, opacity = 0 The fuel-shell attenuation 0.1 is proportional to $\rho^2 R$ 1.5 2.5 2.0 3.0 3.5 Photon energy (keV)

UR

2-D simulations are expected shortly to confirm fuel density estimates

The Lawson criterion can be estimated from the core size and calculated density



UR

- The average density is ~30 g/cm³ \rightarrow n_{e} ~ 7 \times 10²⁴ cm⁻³
- The confinement (disassembly) time is greater than 100 ps
- $n_{\rm e}\tau > 7 \times 10^{20} \, {\rm s/m^3}$
- at 200 eV, $n_e \tau T > 10^{20} \text{ keV-s/m}^3$

E15273

The fusion-confinement parameter in cryogenic implosions on OMEGA is comparable to those achieved in Tokamak experiments

Summary/Conclusions

High fuel areal densities are observed in implosions on OMEGA that are energy-scaled from NIF ignition designs

- Cryogenic target layering has produced ice smoothness that meets NIF specifications:
 - <1- μ m rms in all modes in β -layered DT capsules,
 - <2- μ m rms in all modes in D₂ capsules with auxiliary heating.
- Areal densities in excess of 100 mg/cm² are observed from x-ray and nuclear diagnostics.
- The Lawson criterion for these dense plasmas is $>7 \times 10^{20}$ s/m³ and the fusion parameter is in excess of 10^{20} s-keV/m³.