Effects of lon Viscosity on the Shock Yield
and Hot-Spot Formation in ICF Targets
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Summary

lon viscosity smoothes the shock front and
significantly reduces shock yield in ICF implosions
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The mean free path of the ion is comparable to the size of the
hot spot at shock coalescence.

lon viscosity is very important at the shock front propagating
in the vapor.

lon-viscosity terms are added into hydrodynamic equations
and implemented into LILAC.

Nonlocal effects will be studied in future work.



Standard LILAC simulation

overpredicts the shock yield
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The mean free path of the ion is comparable to the
size of the hot spot at shock coalescence
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Standard LILAC u = u, numerical viscosity
Un < Ui at shock front
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The ion-viscosity term is added into

hydrodynamic equations
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Navier—Stokes equation
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* |deal gas equation of state for ion is assumed.

e Implicit Crank—Nicholson scheme is used to solve
diffusion equations with ion viscosity.
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The shock front is smoothed by ion viscosity
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lon viscous terms are important at shock front
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Nonlocal effects will further smear the shock front.
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lon viscosity reduces hot-spot temperature
at shock coalescence
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Shock yield is reduced by ion-viscosity effects,

which is in better agreement with experiments
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Summary/Conclusions

lon viscosity smoothes the shock front and
significantly reduces shock yield in ICF implosions
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The mean free path of the ion is comparable to the size of the
hot spot at shock coalescence.

lon viscosity is very important at the shock front propagating
in the vapor.

lon-viscosity terms are added into hydrodynamic equations
and implemented into LILAC.

Nonlocal effects will be studied in future work.



