Effects of Ion Viscosity on the Shock Yield and Hot-Spot Formation in ICF Targets

48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006 Summary

Ion viscosity smoothes the shock front and significantly reduces shock yield in ICF implosions.

- The mean free path of the ion is comparable to the size of the hot spot at shock coalescence.
- Ion viscosity is very important at the shock front propagating in the vapor.
- Ion-viscosity terms are added into hydrodynamic equations and implemented into *LILAC*.
- Nonlocal effects will be studied in future work.

Standard *LILAC* simulation overpredicts the shock yield

UR

The mean free path of the ion is comparable to the size of the hot spot at shock coalescence

Shock width

$$\Delta \mathbf{x} \sim \frac{\mu}{\rho_0 \nu_t} \frac{\boldsymbol{P}_0}{\boldsymbol{P}_1 - \boldsymbol{P}_0}$$

Standard LILAC

 $\mu = \mu_n$ numerical viscosity $\mu_n < \mu_i$ at shock front

The ion-viscosity term is added into hydrodynamic equations

Navier–Stokes equation

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial r}\right) = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2p) + \frac{4}{3r^3}\frac{\partial}{\partial r}\left[r^4\mu_i\frac{\partial}{\partial r}\left(\frac{u}{r}\right)\right]$$
$$\mu_i = 0.96 \ n_iT_i\tau_i \qquad \tau_i = \frac{3\sqrt{m_i}T_i^{3/2}}{4\sqrt{\pi}\Lambda e^4Z^4n_i}$$

- Ideal gas equation of state for ion is assumed.
- Implicit Crank–Nicholson scheme is used to solve diffusion equations with ion viscosity.

Ion viscosity reduces hot-spot temperature at shock coalescence

Shock yield is reduced by ion-viscosity effects, which is in better agreement with experiments

Summary/Conclusions

Ion viscosity smoothes the shock front and significantly reduces shock yield in ICF implosions

- The mean free path of the ion is comparable to the size of the hot spot at shock coalescence.
- Ion viscosity is very important at the shock front propagating in the vapor.
- Ion-viscosity terms are added into hydrodynamic equations and implemented into *LILAC*.
- Nonlocal effects will be studied in future work.