Direct-Drive, Foam-Target ICF Implosions

J. P. Knauer University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

Summary

Warm foam cryogenic-surrogate implosions on OMEGA will demonstrate adiabat-shaping techniques

- Foam targets are hydrodynamically equivalent to cryogenic targets.
- Increased radiation from the foam targets does not significantly affect the shell dynamics.
- Current foam targets meet the uniformity specifications but development is needed to show that they can retain D_2 .

Stability of direct-drive targets can be substantially enhanced using adiabat shaping

*V. N. Goncharov et al., Phys. Plasmas <u>10</u>, 1906 (2003).

Foam targets are proposed as surrogates for cryogenic targets to study adiabat shaping

 Γ CH, 3 to 5 μ m D₂ ice 65 to 90 μm D_2 430 *µ*m gas $_{\mathcal{L}}$ CH, 3 to 5 μ m AI, 500 Å $(\rho > 150 \text{ mg/cc})$ Foam 80 to 100 μm D_2 430 µm gas

E15259

Requirements for a surrogate:

- 1. Design should capture early-RT growth
 - overcoat thickness: 3 μ m to 5 μ m
 - density ratio: overcoat/foam = 3 to 4

UR 🔌

- 2. Adiabat shaping is not compromised by radiation from corona ($\rho < 500$ mg/cc, restrictions on high-Z constituents)
- 3. No additional instabilities are created
 - an unstable radiation ablation front is created in low-density foams

The optimal foam density is 180 mg/cc.

Foam and cryogenic targets have similar adiabat shapes for the decaying-shock picket-pulse shape

2-D hydrodynamic simulations show that the "in-flight" shell distortions are analogous

Foam targets are characterized using the same procedures as the cryogenic targets*

*D. H. Edgell et al., Fusion Sci. Technol. <u>49</u>, 616 (2006).

UR

Foam targets have been delivered by GA to LLE for evaluation and implosion

- Foam shell characteristics
 - OD = 857±8.0 μ m
 - CH shell thickness = 5.1 \pm 0.1 μ m
 - rms shell variation = $0.3\pm0.2 \ \mu m$
 - foam thickness = $87\pm3.0 \ \mu m$
 - rms foam variation = $6\pm 2.0 \ \mu$ m
 - gas time constant = 9±5 hours

UR y

- Measured D_2 neutron yields from 2006 foam targets are 10× lower than 2004 foam targets
 - 5-atm targets (2004)
 - neutron yield = $1.5\pm0.4 \times 10^{10}$
 - 1-D yield = $7.0\pm 2.0 \times 10^{10}$
 - 3-atm targets (2006)
 - neutron yield = $1.4\pm0.7 \times 10^9$
 - 1-D yield = $3.6 \pm 0.9 \times 10^{10}$

Summary/Conclusions

Warm foam cryogenic-surrogate implosions on OMEGA will demonstrate adiabat-shaping techniques

• Foam targets are hydrodynamically equivalent to cryogenic targets.

LLE

- Increased radiation from the foam targets does not significantly affect the shell dynamics.
- Current foam targets meet the uniformity specifications but development is needed to show that they can retain D₂.