Theory and Simulation of Laser-Driven Magnetic-Field Compression

N. W. Jang University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society Division of Plasma Physics Philadelphia, PA 30 October–3 November 2006

Summary

Magnetic fields can be compressed to ultrahigh intensities through laser-driven implosions

- A seed axial magnetic field of 0.15 MG inside an imploding laser-driven cylindrical target can be compressed to ultrahigh intensities (≥10 MG).
- A high-intensity magnetic field has a variety of physical implications, including
 - improvement of the hot-spot energy confinement through magnetic insulation
 - improvement of collimation of fast electrons for fast ignition
 - study of magnetic collimation of plasma jets
- A compact Pulsed-Power System for Magnetized Target Experiments on OMEGA^{*} is complete to conduct magnetic-field compression experiments scheduled for 9 November 2006.

Collaborators

R. Betti O. V. Gotchev J. P. Knauer D. D. Meyerhofer

University of Rochester Laboratory for Laser Energetics

A cylindrical target with a seed field is driven by 40 OMEGA laser beams

The targets were simulated with three different core materials:
(1) DD gas at 3 atm (2) vacuum, and (3) 10-mg/cc-density CH foam core

The seed field is trapped by the inner layer of hot-shocked plasma with a high temperature ahead of the shell

Resistive MHD equations were added to the 1-D hydrocode *LILAC*

- Use the existing program LILAC to simulate the target implosion.
 - LILAC is based purely on radiative hydrodynamics
 - modifications are required to build in the effects of the magnetic field. This code will be referred to as *LILAC-MHD*.
- Resistive MHD equations added to LILAC are
 - magnetic-field diffusion: $\partial_t \vec{B} = \nabla \times (\vec{V} \times \vec{B}) + \nabla \cdot \eta \nabla \vec{B}$
 - magnetic diffusivity calculated from temperature and density
- Contributions of magnetic field to existing hydrodynamics are
 - ohmic heating ηJ^2 is added as a source of heat
 - electron and ion thermal conductivity are reduced by the modification factor determined by gyrofrequencies and collision rates
 - magnetic pressure $B^2/2\mu$ added to the hydrodynamic pressure

FSC

The magnetic field at peak compression reaches a magnitude greater than 10 MG

Only a fraction of the initial magnetic flux is trapped and compressed

• Assuming there is no diffusion, the hypothetical maximum field can be calculated by conservation of the magnetic flux.

	Peak compression radius (µm)	Without diffusion (MG)	Simulated maximum field (MG)	Fraction trapped
DD gas	13	14.2	8.3	0.58
Vacuum	7	48.9	1.3	0.03
Foam	15	10.6	3.7	0.30

With the magnetic field, the thermal conductivities become highly anisotropic

Because of the thermal insulation, the hot-spot temperature increases significantly

With enhanced energy confinement, the 1-D neutron yield is one order of magnitude higher

	Neutron yield
Without magnetic field	1.65 × 10 ⁸
With magnetic field	1.02 × 10 ⁶

Magnetic fields can be compressed to ultrahigh intensities through laser-driven implosions

- A seed axial magnetic field of 0.15 MG inside an imploding laser-driven cylindrical target can be compressed to ultrahigh intensities (≥10 MG).
- A magnetic field of high intensity reduces thermal conductivity and improves energy confinement.
- A compact Pulsed-Power System for Magnetized Target Experiments on OMEGA^{*} is complete to conduct magnetic-field compression experiments scheduled for 9 November 2006.