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Resonant absorption is important during the rapid 
increase of laser power in direct-drive target designs 
on OMEGA

TC7512

Summary

• Resonant absorption on OMEGA is determined by linear effects.

• Resonant absorption is important during laser pickets or at the beginning 
of long laser pulses, when the density length scale near the critical 
surface is relatively small, L < 2 nm.

• In spherical implosions, resonant absorption can enhance the earlier-
time laser absorption up to 20%.

• Planar OMEGA experiments will validate theoretical predictions  
with the use of inclined s- and p-polarized laser beams.
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A simplified model of resonant absorption predicts 
a very large electric field at the resonance peak
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An oblique ray incident onto a cold 
inhomogeneous plasma slab z > 0

• Mechanisms limiting the field:

  – electron–ion collisions

  – thermal convection

  – nonlinear wave breaking

• Ponderomotive force ~ E 2
d^ h8 B 

can be important in the 
resonance region.
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• The linearized electron-momentum equation
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 combined with Maxwell’s equations,1

The effect of Langmuir waves has been included in the 
calculation of laser absorption in the 1-D code LILAC
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1-D planar
geometry

1Forslund et al., Phys. Rev. 11, 679 (1975).

• Solutions for s- and 
p-polarized light are 
independent

• Laser absorption in 
LILAC:  .EjQ :=



Laser absorption can be split into two components
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oem = (collisional damping)

ow = (collisional damping) + (Landau damping)
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Generation of Langmuir waves is the dominant mechanism 
that limits the amplitude of resonant fields
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• Under typical conditions
 on OMEGA,
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 the convection of the Langmuir 
waves reduces the amplitude of

 the resonance field below the
 wave-breaking limit.

• Landau damping of Langmuir
 waves produces hot electrons
 with Th ≈ 5 to 10 keV.

• The ponderomotive force
 does not exceed the pressure-
 gradient force and has a small 

dynamic effect.

I = 5 × 1014 W/cm2

i = 23.2°
Te = 960 eV
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Generation of Langmuir waves is the dominant mechanism 
that limits the amplitude of resonant fields
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Generation of Langmuir waves is the dominant mechanism 
that limits the amplitude of resonant fields
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• Under typical conditions
 on OMEGA,
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Reflected laser-light measurements in the planar 
OMEGA experiments will validate theoretical predictions
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Measurement of reflection 
from a probe beam

Several laser beams can be used 
simultaneously on OMEGA

i = 23°, 48°, and 62°
I = 1014 to 1015 W/cm2

Picket or square laser pulses

• Five laser beams at 23.2°.
• Background beams have a  
 mixed s and p polarization.

• Diagnostics will also include
 shock breakout and x-ray
 measurements.
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Simulation of 23°, 1-ns laser beams predict different 
absorption of s- and p-polarized light
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Simulations with a single 23° laser beam

• The effect of resonant 
absorption is smaller

 for beams with larger
 incident angles.
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Planar simulations with angle-dependent laser intensity 
estimate absorption in spherical implosions
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Illumination of a
spherical target

Simulated absorption for a 25-kJ implosion

I(r) & I(i), i = 0...r/2

• Angle-dependent intensity
 in planar geometry

Seka et al., ZO1.00002
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Resonant absorption is important during the rapid 
increase of laser power in direct-drive target designs 
on OMEGA
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Summary/Conclusions

• Resonant absorption on OMEGA is determined by linear effects.

• Resonant absorption is important during laser pickets or at the beginning 
of long laser pulses, when the density length scale near the critical 
surface is relatively small, L < 2 nm.

• In spherical implosions, resonant absorption can enhance the earlier-
time laser absorption up to 20%.

• Planar OMEGA experiments will validate theoretical predictions  
with the use of inclined s- and p-polarized laser beams.


