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• High density/areal-density fuel can be assembled through  
low-velocity, low-adiabat implosions.

• 1-D simulations show that such a fuel assembly can be ignited  
by a spherically convergent shock.

• Two designs are presented with 100-kJ and 500-kJ fuel 
assemblies ignited by a 60-kJ and 200-kJ shock yielding  
1-D gains of ~60 and ~120 respectively.

• 2-D simulations are being performed to evaluate the target 
robustness to inner surface roughness and laser imprinting.

Summary

Shock ignition offers interesting prospects
for high gains at a low direct-driver energy



Low implosion velocity leads to small RT growth and 
high gain; however, slow targets are difficult to ignite 
with standard central ignition.
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• Low velocity = high-gain G

• Low velocity = low RT growth. Ne = number of RT e-foldings

• Low velocity = large energy for ignition
 Eign is the energy required for ignition
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A 100-kJ, RX-shaped pulse can assemble fuel with  
tR = 1.6 g/cm2 through a slow (Vi = 2.5 × 107 cm/s),  
low-adiabat implosion (a = 0.7)
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Energy 
(kJ)

In-flight 
aspect ratio 

IFAR

Max. areal 
density 
(g/cm2)

Implosion
velocity 
(cm/s)

Gain
(not ignited)

100 29 1.6 2.5 × 107 1.7%
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The slow implosion velocity leads to small  
Rayleigh–Taylor growth during the laser flattop
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• Results from RT postprocessor based on Haan–Goncharov  
models and OMEGA laser nonuniformities with 1-THz SSD.



A spherically convergent shock driven by a 60-kJ spike 
in the laser intensity can ignite the hot spot  
of the 100-kJ fuel assembly
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Energy gain = 68
(1-D LILAC simulation)

Laser power and intensity



The laser-driven shock collides with the return shock, 
generating a high-pressure reflected shock  
propagating to the hot spot
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The ignitor pulse drives an incoming 
shock that collides with the return 
shock inside the shell.

A high-pressure shock resulting 
from the collision continues to 
propagate to the central hot spot, 
leading to ignition.
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The high-pressure shock heats the hot spot  
above the ignition threshold
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n n



Ignition is sensitive to the ignitor-shock  
launch time
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The ignitor and return shocks must be synchronized  
to collide in the region of peak density

TC7274

n nn



A 500-kJ. NIF-size fuel assembly is ignited  
by a 200-kJ ignitor shock to produce a gain of 116
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Energy 
(kJ)

Ignitor
pulse

power (TW)

Ignitor
intensity
(W/cm2)

In-flight 
aspect ratio 

IFAR

Max. areal 
density 
(g/cm2)

Implosion
velocity 
(cm/s)

Gain

700 290 1.7 × 1015 29 2.6 2.5 × 107 116
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n

n
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Preliminary work on the effect of ice-surface  
roughness shows encouraging results  
with respect to design robustness
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• High density/areal-density fuel can be assembled through  
low-velocity, low-adiabat implosions.

• 1-D simulations show that such a fuel assembly can be ignited  
by a spherically convergent shock.

• Two designs are presented with 100-kJ and 500-kJ fuel 
assemblies ignited by a 60-kJ and 200-kJ shock yielding  
1-D gains of ~60 and ~120 respectively.

• 2-D simulations are being performed to evaluate the target 
robustness to inner surface roughness and laser imprinting.

Summary/Conclusions

Shock ignition offers interesting prospects
for high gains at a low direct-driver energy


