Shock Fast Ignition of Thermonuclear Fuel
with High Areal Density
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Summary

Shock ignition offers interesting prospects
for high gains at a low direct-driver energy
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High density/areal-density fuel can be assembled through
low-velocity, low-adiabat implosions.

* 1-D simulations show that such a fuel assembly can be ignited
by a spherically convergent shock.

* Two designs are presented with 100-kJ and 500-kdJ fuel
assemblies ignited by a 60-kJ and 200-kJ shock yielding
1-D gains of ~60 and ~120 respectively.

e 2-D simulations are being performed to evaluate the target
robustness to inner surface roughness and laser imprinting.
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Low implosion velocity leads to small RT growth and
high gain; however, slow targets are difficult to ignite
with standard central ignition.
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* Low velocity = high-gain G
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* Low velocity = low RT growth. Ne = number of RT e-foldings

V.
Nekd=1= '

6.7 ( AL )2/ 15 05 (0.35)2/3
3x107

2/15,,0.3\0.35 - (1/3
115 ™ ot s\ AL

* Low velocity = large energy for ignition
Eign is the energy required for ignition
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A 100-kd, RX-shaped pulse can assemble fuel with
PR = 1.6 g/cm?2 through a slow (V; = 2.5 x 107 cm/s),
low-adiabat implosion (o = 0.7)
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The slow implosion velocity leads to small
Rayleigh—-Taylor growth during the laser flattop
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e Results from RT postprocessor based on Haan—-Goncharov
models and OMEGA laser nonuniformities with 1-THz SSD.
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A spherically convergent shock driven by a 60-kdJ spike
in the laser intensity can ignite the hot spot
of the 100-kJ fuel assembly
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The laser-driven shock collides with the return shock,
generating a high-pressure reflected shock
propagating to the hot spot
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The high-pressure shock heats the hot spot

above the ignition threshold
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Ignition is sensitive to the ignitor-shock
launch time
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The ignitor and return shocks must be synchronized
to collide in the region of peak density

100

UR
LLE
G=0.1 G =62 G =0.06
30 | I 100 J | | | |
Q o |
4 Ignitor 11 Jsoor | -
2 gnitor
> 20 shock 1o _
-"'% \i | 1200 shock
& i i
o |
» I
7]
©
=

IN

0 0
0 50 100 150 200 O 50 100 150 0 25 50 75 100
R (um) R (1m) R (um)

— Implosion without ignitor shock
---- Implosion with ignitor shock

TC7274



A 500-kJ. NIF-size fuel assembly is ignited
by a 200-kJ ignitor shock to produce a gain of 116
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Preliminary work on the effect of ice-surface
roughness shows encouraging results

with respect to design robustness
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Summary/Conclusions

Shock ignition offers interesting prospects
for high gains at a low direct-driver energy
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High density/areal-density fuel can be assembled through
low-velocity, low-adiabat implosions.

* 1-D simulations show that such a fuel assembly can be ignited
by a spherically convergent shock.

* Two designs are presented with 100-kJ and 500-kdJ fuel
assemblies ignited by a 60-kJ and 200-kJ shock yielding
1-D gains of ~60 and ~120 respectively.

e 2-D simulations are being performed to evaluate the target
robustness to inner surface roughness and laser imprinting.

TC7266



