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With the current target design plasma filling of the 
interior of the cone starts after peak compression

E14082

•	 Experiments were performed with cone-in-shell fast-ignitor 
targets in laser direct-drive geometry to explore the filling of the 
interior of the cone where the ultrafast laser has to propagate. 

•	 Backlit x-ray images show the creation of hot, dense core plasma, 
which erodes the tip of the cone and drives a shock wave through 
the cone tip, creating plasma when it breaks out.

•	 The shock breakout was observed using a streaked optical 
pyrometer (SOP) in the visible spectrum at 660 nm wavelength.

•	 The shock temperature was estimated to be of the order of 10 eV. 

Summary



The two viable fast-ignition concepts share fundamental 
issues: hot-electron production and transport to the core
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Channeling Concept Cone-Focused Concept



The backlit framing camera images show the core 
assembly and cone reaction in great detail
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1.73 ns 1.85 ns 2.04 ns 2.15 ns

2.23 ns 2.54 ns 2.65 ns 2.77 ns

200 μm

Shot 32381, V backlighter, D2 fill, 
yield = 6.23 × 106



The hydrodynamic evolution of the 35° cones shown  
in the backlit images is very similar to the 70° cones
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Shot 37212, Fe backlighter, no fill

200 μm



Streaked optical pyrometry (SOP) is used to observe  
the cone filling with plasma
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Big cones were necessary to shield SOP from  
the hot laser plasma driving the shell
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1 mm 1 mm



The 70° cone shows a clean shock-breakout  
signal at the tip of the cone
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Laser Plasma

•	 Shot 38548, 1 ns pulse, 18 kJ, 48 beams, 24 nm CH shell



The emission inside the 70° cone starts after  
the time of peak compression (~2.2 ns)

E13825

•	 Lineouts through the tip of the cone in the center of the SOP streak

•	 Areal density from 1-D hydrocode simulations

•	 Shock temperature ~10 eV

38548



The signal from the 30° cone is compromised by a shock 
breaking out from the shell–cone–joint region
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Plasma

•	 Shot 39505, 1 ns pulse, 21 kJ, 54 beams, 24 nm CH shell



The emission inside the 35° cone starts after  
the time of peak compression (~2.1 ns)
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•	 Lineouts through the tip of the cone in the center of the SOP streak

•	 Areal density from 1-D hydrocode simulations

•	 Shock temperature ~10 eV

39505
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Summary/Conclusions

With the current target design plasma filling of the 
interior of the cone starts after peak compression

•	 Experiments were performed with cone-in-shell fast-ignitor 
targets in laser direct-drive geometry to explore the filling of the 
interior of the cone where the ultrafast laser has to propagate. 

•	 Backlit x-ray images show the creation of hot, dense core plasma, 
which erodes the tip of the cone and drives a shock wave through 
the cone tip, creating plasma when it breaks out.

•	 The shock breakout was observed using a streaked optical 
pyrometer (SOP) in the visible spectrum at 660 nm wavelength.

•	 The shock temperature was estimated to be of the order of 10 eV. 


