Rayleigh–Taylor Growth Measurements of 3-D Modulations in Nonlinear Regimes

V. A. Smalyuk University of Rochester Laboratory for Laser Energetics 47th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 24–28 October 2005

Summary

The measured nonlinear Rayleigh–Taylor growth is in good agreement with theoretical models

- Direct-drive, planar through-foil radiography is analyzed in real and Fourier spaces.
- Nonlinear velocities and spectral shapes are consistent with Haan-model* predictions.
- Late nonlinear growth is relatively insensitive to initial conditions.
- The self-similar regime** of bubble size distributions was observed with the modulation $\sigma_{\rm rms}$ growing as $\alpha_{\sigma} {\rm gt}^2$, with $\alpha_{\sigma} = 0.027$.

Bubble front $\alpha_{B} \simeq \sqrt{2} \cdot \alpha_{\sigma} = 0.04$ is consistent with Haan's saturation parameter $\left(S_{k} = \frac{2}{Lk^{2}}\right)$ and previous classical RT results.

^{*}S. Haan, Phys. Rev. A <u>39</u>, 5812 (1989).

**U. Alon et al., Phys. Rev. Lett. <u>74</u>, 534 (1995).

R. Betti, V. N. Goncharov, J. A. Delettrez, D. D. Meyerhofer, S. P. Regan, and T. C. Sangster

University of Rochester Laboratory for Laser Energetics

O. Sadot, D. Shvarts

Nuclear Research Center Negev, Israel

The Rayleigh–Taylor instability has linear, nonlinear, and turbulent stages

In the Haan saturation model, 3-D broadband modulations saturate at $S_k = \frac{2}{Lk^2}^*$

• For a single-mode modulation Z_k the saturation level is 0.1 λ

 $S_k = 0.1 \lambda$

- For broadband modulations saturation, the σ_{rms} of modes near Z_k is 0.1 λ

$$\sqrt{\sum_{\mathbf{k}-\delta\mathbf{k}}^{\mathbf{k}+\delta\mathbf{k}}} \mathbf{S}_{\mathbf{k}}^{2} = 0.1 \lambda$$

•
$$S_k = \frac{\epsilon}{Lk^2}$$
, where $\epsilon = 2$

^{*}S. Haan, Phys. Rev. A <u>39</u>, 5812 (1989).

In the Haan saturation model,* the Fourier amplitudes of broadband modulations saturate at $S_k = \frac{2}{Lk^2}$

- Fourier amplitudes grow exponentially up to the saturation levels $S_k = \frac{2}{1}$
- Subsequent growth is linear in time with velocities Vs = S_k × γ (k) [γ (k) is the linear growth rate].
- The shape of the late modulation spectrum is relatively insensitive to the initial modulation spectrum and to growth history (growth rates).

In real-space analysis, bubble competition models predict that bubble size distributions evolve in self-similar regimes*

*U. Alon *et al.*, Phys. Rev. Lett. <u>74</u>, 534 (1995).

UR

Initial seeds for the Rayleigh–Taylor instability were produced by laser imprinting

RT Growth Measurements

X-ray framing cameras are the primary diagnostics of instability growth

UR

- 20- μm thick foils driven by 3-ns pulses at 2 \times 10^{14} W/cm^2
- + 50- μm thick foil driven by 12-ns pulses at 5 \times 10^{13} W/cm^2

Thin Target, Early-Time Experiment

The growth of imprinted broadband modulations has been measured with a spatial resolution of 10 μ m

t = 1.8 ns t = 2.3 ns

- 20- μ m thick CH foils were driven with 3-ns square laser pulses at 2 \times 10¹⁴ W/cm².
- Fourier amplitudes were obtained by taking azimuthal averages of the 2-D Fourier images.

Thin Target, Early-Time Experiment

The measured spectral evolution is in agreement with Haan's saturation level, evolving toward longer wavelengths*

- Questions left:
 - **1. What are the post-saturation velocities?**
 - 2. When do bubble competition and merger happen?

UR

^{*}V. A. Smalyuk et al., Phys. Rev. Lett. <u>81</u>, 5342 (1998).

Thick Target, Late-Time Experiment

Broadband modulations become larger as they grow nonlinearly

size ~ 3 μ m

- 50- μm -thick CH foils were driven with 12-ns-square laser pulses at 5 \times 10 13 W/cm 2

The late nonlinear evolution is relatively insensitive to initial conditions

Characteristic size ~ 30 μ m

- 50- μm thick CH foils were driven with 12-ns-square laser pulses at 5 \times 10 13 W/cm^2

The nonlinear evolution is relatively insensitive to initial conditions

Characteristic size ~ 30 μ m E14073

The modulation spectra shift to longer wavelengths as they grow, similar to Haan model predictions

Nonlinear velocities and growth rates were determined by fitting the experimental data at various wavelengths

• Initial modulations were imprinted using a beam with SG8 DPP.

Saturation levels, pre-saturation growth, and post-saturation growth are insensitive to the initial spectrum

Measured nonlinear velocities are in good agreement with Haan model predictions*

*V. A. Smalyuk et al., to be published in Phys. Rev. Lett. (2005).

UR

The measured growth rates of longer-wavelength modes are higher than single-mode predictions

- Betti–Goncharov growth rate $\gamma = 0.94\sqrt{1 + kL_m} 1.5 V_a k$
- S. W. Haan* and D. Ofer *et al.*** predict no significant mode coupling in the ablative case.
- J. Sanz *et al.*[†] predicted enhanced mode coupling in the ablative case compared to the classical case.

^{*}S. W. Haan, Phys. Fluids B <u>3</u>, 2349 (1991), **D. Ofer et al., Phys. Plasmas <u>3</u>, 3073 (1996), [†]J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002).

Real-space bubble competition models describe Rayleigh–Taylor evolution more naturally

Raw images ۲m 333 **Processed images**

The nonlinear bubble evolution is self-similar in the nonlinear regime

UR

Measured distributions were fit with a normal distribution function.

$$f\left(\frac{\lambda}{\langle\lambda\rangle}\right) = \frac{1}{\sqrt{2\pi} C_{\lambda}} \exp\left[-\frac{\left(\frac{\lambda}{\langle\lambda\rangle}-1\right)^{2}}{\sqrt{2} C_{\lambda}^{2}}\right], \qquad C_{\lambda} = 0.24 \pm 0.01.$$

Measured bubble size distributions are in better agreement with 3-D models than with 2-D models*

UR

In the self-similar regimes, both the average bubble size and rms amplitude grow linearly with the distance traveled

Real-Space Analysis Average size $\langle \lambda
angle (\mu m)$ rms amplitude (*µ*m) Distance traveled (μ m) Distance traveled (μ m)

• The modulation $\sigma_{\rm rms}$ grows as α_{σ} gt², with α_{σ} = 0.027±0.003.

Measured bubble-front evolution is consistent with $\alpha_B \sim 0.04$

•
$$h_{bubble} \simeq \sqrt{2} \alpha_{\sigma} \cdot gt^2 = 0.04 gt^2$$

• Haan model

$$S_k = \frac{2}{Lk^2}$$
 is consistent with $\alpha_B \sim 0.035$
if $S_k = \frac{4}{Lk^2}$ is consistent with $\alpha_B \sim 0.07$

• Measured ablative RT $\alpha_{\rm B}$ is similar to classical RT $\alpha_{\rm B}^{*}$

The bubble merger is evident from the evolution of the same area of the target*

The measured nonlinear Rayleigh–Taylor growth is in good agreement with theoretical models

- Direct-drive, planar through-foil radiography is analyzed in real and Fourier spaces.
- Nonlinear velocities and spectral shapes are consistent with Haan-model* predictions.
- Late nonlinear growth is relatively insensitive to initial conditions.
- The self-similar regime** of bubble size distributions was observed with the modulation $\sigma_{\rm rms}$ growing as $\alpha_{\sigma} {\rm gt}^2$, with $\alpha_{\sigma} = 0.027$.

Bubble front $\alpha_{B} \simeq \sqrt{2} \cdot \alpha_{\sigma} = 0.04$ is consistent with Haan's saturation parameter $\left(S_{k} = \frac{2}{Lk^{2}}\right)$ and previous classical RT results.

^{*}S. Haan, Phys. Rev. A <u>39</u>, 5812 (1989).

**U. Alon et al., Phys. Rev. Lett. <u>74</u>, 534 (1995).