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The measured nonlinear Rayleigh–Taylor growth  
is in good agreement with theoretical models
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Summary

*S. Haan, Phys. Rev. A 39, 5812 (1989).
**U. Alon et al., Phys. Rev. Lett. 74, 534 (1995).

•	 Direct-drive, planar through-foil radiography is analyzed  
in real and Fourier spaces. 

•	 Nonlinear velocities and spectral shapes are consistent 
with Haan-model* predictions.

•	 Late nonlinear growth is relatively insensitive to initial 
conditions.

•	 The self-similar regime** of bubble size distributions was 
observed with the modulation vrms growing as avgt2, 
with av = 0.027.

–	 Bubble front .2 0 04B :b =a av  is consistent with 

Haan’s saturation parameter S
Lk

2
k 2=d n and previous

	 classical RT results.
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The Rayleigh–Taylor instability has linear, nonlinear,  
and turbulent stages
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Small-amplitude modulations grow 
exponentially in the linear regime.

Bubbles compete and merge  
in the nonlinear regime.

Chaotic mixing is characteristic  
in the turbulent regime of classical 
Rayleigh–Taylor instability.
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In the Haan saturation model, 3-D broadband 
modulations saturate at Sk =      *
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•	 For a single-mode modulation Zk the saturation level is 0.1 m 

Sk = 0.1 m

•	 For broadband modulations saturation, the vrms of modes 
near Zk is 0.1 m
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*S. Haan, Phys. Rev. A 39, 5812 (1989).



In the Haan saturation model,* the Fourier amplitudes
of broadband modulations saturate at Sk = 

•	 Fourier amplitudes grow exponentially

	 up to the saturation levels  S
Lk

2
k 2=    

•	 Subsequent growth is linear in time
	 with velocities  Vs = Sk × c (k) 
	 [c (k) is the linear growth rate].

•	 The shape of the late modulation 
spectrum is relatively insensitive to 
the initial modulation spectrum and to 
growth history (growth rates).
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*S. Haan, Phys. Rev. A 39, 5812 (1989).



In real-space analysis, bubble competition  
models predict that bubble size distributions  
evolve in self-similar regimes*
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m/〈m〉

*U. Alon et al., Phys. Rev. Lett. 74, 534 (1995).
*D. Oron et al., Phys. Plasmas 8, 2883 (2001). 



Initial seeds for the Rayleigh–Taylor instability
were produced by laser imprinting
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X-ray framing cameras are the primary 
diagnostics of instability growth

E14072

RT Growth Measurements

Δ

•	 20-nm thick foils driven by 3-ns pulses at 2 × 1014 W/cm2

•	 50-nm thick foil driven by 12-ns pulses at 5 × 1013 W/cm2



The growth of imprinted broadband modulations has  
been measured with a spatial resolution of 10 nm
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t = 1.8 ns t = 2.3 ns

1 mm

Thin Target, Early-Time Experiment

•	 20-nm thick CH foils were driven with 3-ns square laser pulses 
at 2 × 1014 W/cm2.

•	 Fourier amplitudes were obtained by taking azimuthal averages 
of the 2-D Fourier images.

400 nm



The measured spectral evolution is in agreement  
with Haan’s saturation level, evolving toward  
longer wavelengths*

E9193c

Thin Target, Early-Time Experiment

*V. A. Smalyuk et al., Phys. Rev. Lett. 81, 5342 (1998).

× 

n nm nmm

•	 Questions left:

1.	What are the post-saturation velocities?

2.	When do bubble competition and merger happen? 
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Broadband modulations become larger  
as they grow nonlinearly
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•	 50-mm-thick CH foils were driven with 12-ns-square
	 laser pulses at 5 × 1013 W/cm2

4 ns 6 ns 10 ns
X-ray radiographs at:

Characteristic 
size ~ 3 nm

Thick Target, Late-Time Experiment

SG8 DPP
laser modulation

(input)
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Characteristic 
size ~ 30 nm

The late nonlinear evolution is relatively 
insensitive to initial conditions
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•	 50-μm thick CH foils were driven with 12-ns-square
	 laser pulses at 5 × 1013 W/cm2

No DPP,
laser modulation

(input) 
X-ray radiographs at:

4 ns 5 ns 8 ns
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The nonlinear evolution is relatively  
insensitive to initial conditions
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n

The modulation spectra shift to longer wavelengths
as they grow, similar to Haan model predictions
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2
Lk2Sk =        × ρ

Nonlinear velocities and growth rates were determined  
by fitting the experimental data at various wavelengths
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•	 Initial modulations were imprinted using a beam with SG8 DPP.

λ = 120 mm

2
Lk2Sk =        × ρ
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Saturation levels, pre-saturation growth,  
and post-saturation growth are insensitive  
to the initial spectrum
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Sk =        × ρ2
Lk2

c = 1.4 ns–1

Vs = 0.48 nm/ns

Sk =        × ρ2
Lk2

c = 1.6 ns–1

Vs = 0.46 nm/ns



•	 Betti–Goncharov growth rate . kL
kg

0 94 1 m
=

+
c  – 1.5 Va k

Measured nonlinear velocities are in good agreement 
with Haan model predictions*
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μ

Vs =        × c2
Lk2

Haan saturation velocity

*V. A. Smalyuk et al., to be published in Phys. Rev. Lett. (2005).



The measured growth rates of longer-wavelength modes 
are higher than single-mode predictions
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•	 Betti–Goncharov growth rate c = 0.94    1 + kLm  – 1.5 Va k

•	 S. W. Haan*  and D. Ofer et al.** predict no significant mode 
coupling in the ablative case.

•	 J. Sanz et al.† predicted enhanced mode coupling in the  
ablative case compared to the classical case. 

kg

*S. W. Haan, Phys. Fluids B 3, 2349 (1991), **D. Ofer et al., Phys. Plasmas 3, 3073 (1996),
†J. Sanz et al., Phys. Rev. Lett. 89, 195002 (2002).



Real-space bubble competition models describe 
Rayleigh–Taylor evolution more naturally
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Raw images

Processed images
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*O. Sadot et al., LO1.003 



The nonlinear bubble evolution is self-similar  
in the nonlinear regime
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 m n m/〈m〉

Measured distributions were fit with a normal distribution function.
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Measured bubble size distributions are in better 
agreement with 3-D models than with 2-D models*
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m/〈m〉

*D. Oron et al., Phys. Plasmas 8, 2883 (2001).



In the self-similar regimes, both the average bubble size 
and rms amplitude grow linearly with the distance traveled
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Real-Space Analysis

•	 The modulation vrms grows as avgt2, with av = 0.027±0.003.



Measured bubble-front evolution  
is consistent with aB ~ 0.04
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•	 hbubble - .gt gt2 0 042 2: =av

•	 Haan model

		
Lk

S 2
k 2=  is consistent with ~ .0 035Ba

		  if S
Lk

4
k 2=  is consistent with ~ .0 07Ba

•	 Measured ablative RT aB is similar to classical RT aB.*

*G. Dimonte et al., Phys. Plasmas 12, 056301 (2005).



The bubble merger is evident from the evolution  
of the same area of the target*

E14076 *O. Sadot et al., LO1.003 
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Summary/Conclusions

The measured nonlinear Rayleigh–Taylor growth  
is in good agreement with theoretical models

*S. Haan, Phys. Rev. A 39, 5812 (1989).
**U. Alon et al., Phys. Rev. Lett. 74, 534 (1995).

•	 Direct-drive, planar through-foil radiography is analyzed  
in real and Fourier spaces. 

•	 Nonlinear velocities and spectral shapes are consistent 
with Haan-model* predictions.

•	 Late nonlinear growth is relatively insensitive to initial 
conditions.

•	 The self-similar regime** of bubble size distributions was 
observed with the modulation vrms growing as avgt2, 
with av = 0.027.

–	 Bubble front .2 0 04B :b =a av  is consistent with 

Haan’s saturation parameter S
Lk

2
k 2=d n and previous

	 classical RT results.


