
Relativistic Electron Beam Microinstabilities
in the Fast-Ignition Regime

R. W. Short and J. Myatt

University of Rochester
Laboratory for Laser Energetics

46th Annual Meeting of the American Physical Society
Division of Plasma Physics

Denver, CO
24 – 28 October 2005



A general dispersion relation for relativistic electron-
beam microinstabilities is useful in addressing several 
problems relevant to fast ignition
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•	 Previous work on Weibel, two-stream, and related instabilities 
	 in relativistic electron beams has employed assumptions 
	 and approximations that limit applicability.

•	 More reliable determination of plasma and beam temperature effects
	 is obtained using Maxwell–Boltzman–Jüttner distribution functions
	 (or suitable approximations) rather than delta-function or
	 waterbag distributions.

•	 Inclusion of off-diagonal elements in the dielectric tensor incorporates
	 the electrostatic component of beam filamentation, an important
	 diagnostic signature which can affect growth rates.

•	 The generalization to complex wave vectors in arbitrary directions 
	 allows calculations of spatial growth rates and investigations of 
	 absolute versus convective instability.

Summary



Most fast-ignition scenarios require propagation
of a relativistic electron beam through a plasma
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•	 Large-scale beam instabilities (kinking, pinching) develop slowly
	 on the FI timescale.

•	 Microinstabilities grow faster and include beam–plasma (electrostatic)
	 and filamentation (electromagnetic or mixed) instabilities.

•	 These instabilities require impedance.

		  –	Reactive (electron inertia, Weibel and beam–plasma instability):
			   dominant at low densities (few × critical).

		  –	Resisitive (collisional, resistive filamentation): dominant at
			   high densities (compressed core).

		  –	A FI beam will transit both regions (reactive first.)

•	 A fully relativistic treatment of the collisionless case can be carried out
	 analytically; the collisional case is more difficult.



Instabilities can be treated as a perturbed
equilibrium provided the growth times are shorter
than the beam slowing time
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•	 Assume that, in equilibrium, the charge densities, currents, and fields 
	 vanish and that all perturbed quantities have the space and time
	 dependence ei k x t: -~] g

•	 Maxwell’s equations relate the current to the perturbed electric field.
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•	 The rest of the problem consists of using the plasma properties
	 to derive the perturbed current as a response to E (the dielectric tensor).
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The simplest model treats the
return current as purely resistive
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•	 The beam current Jb is assumed collisionless and, in equilibrium,
	 is balanced by a return current Jp = –Jb.

•	 In the resistive model (Gremillet et al., 2002), the perturbed current is
	 related to the field by Jp = 1/η E, where η is the resistivity.

•	 When the frequencies (real or growth rate) become comparable to η, 
	 inertial effects can be included using the result from a fluid treatment

	 I
I

i k

k v kv kk
i v k1

4

1 3

4
p

p T

0
2

0

0
2 0 0 2

0"
:

:

- -

- + +
+h ~ h r ~ y

~ ~ ~ y

r^

b

h

l; E

 , where v0 is the

	 equilibrium beam velocity.

•	 At low densities, inertial effects dominate the perturbed return current,
	 and a collisionless kinetic treatment is appropriate.
	
	  



The relativistic electron beam can be represented
as a Maxwell–Boltzmann–Jüttner distribution
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•	 The MBJ distribution is a relativistic generalization of the Maxwellian
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•	 When the thermal spread is small compared to the beam velocity,
	 this can be approximated as a drifting Maxwellian
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•	 These forms are also used to represent the return current
	 in the collisionless case.		
	



In the collisionless case, the perturbed currents are
calculated from the relativistic Vlasov equation
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•	 The linearized relativistic Vlasov equation can be written as
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•	 Solving for the perturbed current gives
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•	 In the drifting Maxwellian approximation, the integrals can be
	 expressed in terms of the usual plasma Z-function.

•	 The exact relativistic integrals can be expressed in terms of integrals

	 of the form ,ds cks z
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The resulting dispersion relations are complicated
algebraically but readily evaluated numerically
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•	 The dispersion relation is obtained from 
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•	 A typical R-component in the drifting Maxwellian approximation with the
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The electrostatic component typically has little effect on 
filamentation growth rates, but is responsible for density 
perturbations seen in experiments
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	 neb	=	1020

	 nep	=	1021
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Inertial terms increase the growth rates at
lower ratios of background to beam densities
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	 neb	=	1020
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The general dispersion relation can be used to address
several further problems of interest in FI experiments
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•	 Using real w and complex k spatial growth rates can be calculated,
	 which are of greater relevance to FI than the temporal growth rates.

•	 The transition from convective to absolute intabilities can be studied;
	 this requires both w and k to be complex.

•	 Arbitrary wave-vector directions allow the comparison of two-stream
	 and filamentation instabilities and the identification of the most 
	 unstable mode, which may lie between these instabilities 
	 [A. Brett et al., PRL 94 (2005).]

•	 The analytic theory can be used to benchmark simulation codes
	 such as LSP and optimize simulation parameters.



A general dispersion relation for relativistic electron-
beam microinstabilities is useful in addressing several 
problems relevant to fast ignition
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•	 Previous work on Weibel, two-stream, and related instabilities 
	 in relativistic electron beams has employed assumptions 
	 and approximations that limit applicability.

•	 More reliable determination of plasma and beam temperature effects
	 is obtained using Maxwell–Boltzman–Jüttner distribution functions
	 (or suitable approximations) rather than delta-function or
	 waterbag distributions.

•	 Inclusion of off-diagonal elements in the dielectric tensor incorporates
	 the electrostatic component of beam filamentation, an important
	 diagnostic signature which can affect growth rates.

•	 The generalization to complex wave vectors in arbitrary directions 
	 allows calculations of spatial growth rates and investigations of 
	 absolute versus convective instability.

Summary/Conclusions


