Stimlated Brillouin Scattering in Plasmas Relevant to Direct-Drive Laser Fusion

W. Seka *et al*. University of Rochester Laboratory for Laser Energetics 47th Annual Meeting of the American Physical Society Division of Plasma Physics Denver, CO 24–28 October 2005

Present OMEGA long-scale-length experiments establish the importance of electromagnetic seeding of SBS below the conventional threshold

- Flat velocity profiles (long gradient lengths) are predicted for direct-drive NIF ignition experiments and are reproduced in current OMEGA experiments.
- SBS strongly favors these regions. Simple model calculations agree well with current SBS spectra and their temporal behavior.

UR 🔌

- Electromagnetic (EM) seeding in these experiments has been clearly established.
- The importance of EM-seeded SBS near n_c in NIF direct-drive experiments still has to be evaluated.

J. Myatt, A. V. Maximov, R. S. Craxton, R. W. Short, A. Simon, and R. E. Bahr

> Laboratory for Laser Energetics University of Rochester

H. Baldis

University of California at Davis Lawrence Livermore National Laboratory OMEGA long scale lengths experiments use multiple interaction beams at oblique incidence to identify EM-seeded SBS

OMEGA long-scale-length experiments use multiple interaction beams at oblique incidence to identify EM-seeded SBS

Note: these intensities are far below the SBS threshold for amplification from thermal noise and use only average intensities.

Without SSD, EM-seeded SBS occurs in a narrowwavelength band, resulting in a short duration and low backscatter

Without SSD, EM-seeded SBS occurs in a narrowwavelength band, resulting in a short duration and low backscatter

Pure specular reflection and EM-seeded SBS are easily distinguished in the calculated spectra and the reflectivities

This model uses average intensities, ignoring the high-intensity speckle. Including the speckles would significantly raise the SBS scattered power.

Pure specular reflection and EM-seeded SBS are easily distinguished in the calculated spectra and the reflectivities

SBS gain predictions for the NIF quad are similar to OMEGA in low-density corona; high-density SBS may be higher on the NIF

Present OMEGA long-scale-length experiments establish the importance of electromagnetic seeding of SBS below the conventional threshold

- Flat velocity profiles (long gradient lengths) are predicted for direct-drive NIF ignition experiments and are reproduced in current OMEGA experiments.
- SBS strongly favors these regions. Simple model calculations agree well with current SBS spectra and their temporal behavior.
- Electromagnetic (EM) seeding in these experiments has been clearly established.
- The importance of EM-seeded SBS near n_c in NIF direct-drive experiments still has to be evaluated.